Анализ характеристик потока между двумя вращающимися дисками в системе подвода воздуха к рабочей лопатке турбины на основе адаптированных критериев подобия


DOI: 10.34759/TPT-2019-11-10-434-446

Авторы

Диденко Р. А.1*, Пиралишвили Ш. А.2**, Шахов В. Г.3***

1. Объединенная двигателестроителъная корпорация «Сатурн», проспект Ленина, 163, Рыбинск, Ярославская область, 152903, Россия
2. Самарский государственный университет путей сообщения, 443066, г. Самара, 1-й Безымянный пер., 18
3. Самарский университет, Самара, Россия

*e-mail: roman.didenko@npo-saturn.ru
**e-mail: piral@list.ru
***e-mail: shakhov@ssau.ru

Аннотация

Представлены результаты выбора, адаптации критериев подобия и анализа характеристик течения закрученного потока между двумя вращающимися дисками в системе подвода воздуха к рабочей лопатке первой ступени турбины высокого давления перспективного ГТД.

Ключевые слова:

уравнения Навье-Стокса, число Россби, число Рейнольдса, число Экмана, закрутка потока, обобщенный параметр турбулентного потока

Библиографический список

  1. Von Kármán Th. Über laminare und turbulente Reibung // Zeitschrift fur Angewandte Mathematik und Mechanik. 1921. Vol. 1. N 4. P. 233–254. https://doi.org/10.1002/zamm.19210010401

  2. Cochran W.G. The flow due to a rotating disc // Proc. Сamb. Phil. Soc. 1934. Vol. 30. N 3. P. 365–375. https://doi.org/10.1017/S0305004100012561

  3. Batchelor K.G. Note on a class of solutions of the Navier-Stokes equations representing steady rotationally-symmetric flow // Q.J. Mech. Maths. 1951. Vol. 4. N 1. P. 29–41. https://doi.org/10.1093/qjmam/4.1.29

  4. Stewartson K. On the flow between two rotating coaxial disks // Proc. Сamb. Phil. Soc. 1953. Vol. 49. N 2. P. 333–341. DOI: https://doi.org/10.1017/S0305004100028437

  5. Karabay H., Chen J.X., Pilbrow R., Wilson, M., Owen J.M. Flow in a «cover-plate» preswirl rotor-stator system // Journal of Turbomachinery: Transactions of the ASME. 1999. Vol. 121. N 1. P. 160–166.

  6. Jarzombek K., Dohmen H.J., Benra F.-K., Schneider O. Flow Analysis in Gas Turbine Pre-Swirl Cooling Air Systems — Variation of geometric parameters // ASME Paper GT2006-90445. 2006.

  7. Farzaneh-Gord M., Wilson M., Owen J.M. Numerical and Theoretical Study of Flow and Heat Transfer in a Pre-swirl Rotor-Stator System // ASME Paper GT2005-68135. 2005.

  8. Karabay H., Wilson M., Owen J.M. Approximate Solutions for Flow and Heat Transfer in Pre-Swirl Rotating-Disc Systems // ASME Paper 2001-GT-0200. 2001.

  9. Lewis P., Wilson М., Lock G., Owen J.M. Effect of Radial Location of Nozzles on Performance of Pre-Swirl Systems // ASME Paper GT2008-50295.

  10. Lewis P., Wilson М., Lock G., Owen J. M. Physical Interpretation of Flow and Heat Transfer in Pre-swirl Systems // ASME Paper GT2006-90132. 2006.

  11. El-Oun Z.B., Owen J.M. Preswirl blade-cooling effectiveness in an adiabatic rotor-stator system // ASME J. Turbomachinery. 1989. Vol. 111. N 4. P. 522–529. https://doi.org/10.1115/1.3262303

  12. Owen J.M., Pincombe J.R., Rogers R.H. Source-sink flow inside a rotating cylindrical cavity // J. Fluid Mech. 1985. Vol. 155. P. 233–265. DOI: https://doi.org/10.1017/S0022112085001793

  13. Kakade V.U., Lock G.D., Wilson M, Owen J.M., Mayhew J.E. Effect of Radial Location of Nozzles on Heat Transfer in Pre-swirl Cooling Systems // ASME Paper GT2009-59090. 2009.

  14. Karabay H., Wilson M., Owen J. M. Predictions of effect of swirl ratio on flow and heat transfer in rotating cavity // Int. J. of Heat and Fluid Flow. 2001. Vol. 22. P.143—155.

  15. Louis J.F., Salhi A. Turbulent flow velocity between rotating co-axial disks of finite radius // ASME J. of Turbomachinery. 1989. Vol. 111. N 3. P. 333–340.

  16. Pett A., Coren D., Childs P. Model Validation for a Shrouded Rotor-Stator System with Superposed Cooling and Static Protuberances // ASME Paper GT2007-27744. 2007.

  17. Chew J.W., Ciampoli F., Hills N.J., Scanlon T. Pre-swirled Cooling Air Delivery System Performance // ASME Paper GT2005-68323. 2005.

  18. Yan Y, Gord M.F., Lock G.D., Wilson M., Owen J.M. Fluid dynamics of a pre-swirl rotor-stator system // ASME J. Turbomachinery. 2003. Vol. 125. N 4. P. 641–647. https://doi.org/10.1115/1.1578502

  19. Owen J.M. Air-cooled gas-turbine discs: a review of recent research // Int. Journal of Heat and Fluid Flow. 1988. Vol. 9. N 4. P. 354–365.

  20. Owen J.M. An approximate solution of the flow between a rotating and stationary disk // ASME J. Turbomachinery. 1989. Vol. 111. N 3. P. 323–332.

  21. Ong C.L., Owen J.M. Boundary-layer flows in rotating cavities // ASME J. Turbomachinery. 1989. Vol. 111. N 3. P. 341–348.

  22. Ong C.L., Owen J.M. Computation of the flow and heat transfer due to the rotating disc // Int. J. Heat and Fluid Flow. 1991. Vol. 12. N 2. P. 106–115.

  23. Childs P.R.N. Rotating Flow. Elsevier Science, 2011. 416 p.

  24. Owen J.M., Rogers R.H. Flow and Heat Transfer in Rotating-Disc Systems. Vol. 2: Rotating cavities. Wiley, New York, 1995. 295 p.

  25. Shevchuk I.V. Modelling of Convective Heat and Mass Transfer in Rotating Flows. Springer, International Publishing Switzerland, 2016. 235 p.

  26. Shevchuk I.V. Convective Heat and Mass Transfer in Rotating Disk Systems. Springer, 2009. 236 p. http://www.springer.com/978-3-642-00717-0

  27. Owen J.M., Pincombe J.R. Vortex breakdown in a rotating cylindrical cavity // J. Fluid Mech. 1979. Vol. 90. N 1. P. 109–127. https://doi.org/10.1017/S0022112079002093

  28. Owen J.M., Pincombe J.R. Velocity measurements inside a rotating cylindrical cavity // J. Fluid Mech. 1980. Vol. 99. N 1. P. 111–127. https://doi.org/10.1017/S0022112080000547

  29. Greenspan H.P. The Theory of Rotating Fluids. Cambridge University Press, 1968. 327 p.

  30. Chew J.W, Rogers R.H. An integral method for the calculation of turbulent forced convection in a rotating cavity with radial outflow // Int. J. Heat and Fluid Flow. 1988. Vol. 9. N 1. P. 37–48.

  31. Гухман А.А. Введение в теорию подобия. М.: Высшая школа, 1973. 296 с.

mai.ru — информационный портал Московского авиационного института

© МАИ, 2018-2024