Представлен обзор исследований по достаточно узкоспециализированному вопросу — спеканию лунного реголита. В некоторых перспективных проектах спекание реголита рассматривается как возможный способ изготовления конструкционных материалов, которые могут быть использованы при строительстве лунных баз. Акцент сделан на методике, в которой спекание производилось под действием концентрированного солнечного излучения. Рассмотрено влияние различных параметров на свойства спеченных образцов. Показано, что на характеристики таких образцов влияют размер частиц, гранулометрический состав, плотность упаковки частиц и среда, в которой производится спекание.
Heiken G., Vaniman D., French B.M. Lunar source book: A user’s guide to the moon. Cambridge, U.K.: Cambridge University Press, 1991. 778 p.
Meurisse A., Beltzung J.C., Kolbe M., Cowley A., Sperl M. Influence of mineral composition on sintering lu- nar regolith // J. Aero. Eng. 2017. V. 30. N 4. 04017014. DOI: 10.1061/(ASCE)AS.1943-5525.0000721
Delgado A., Shafirovich E. Towards better combustion of lunar regolith with magnesium // Combust. Flame. 2013. V. 160. N 9. P. 1876–1882. https://doi.org/10.1016/j.com- bustflame.2013.03.021
Hintze P.E., Curran J., Back T. Lunar surface stabiliza- tion via sintering or the use of heat cured polymers // 47th AIAA Aerospace Science Meeting. 2009. P. 1009–1015. DOI: 10.2514/6.2009-1015
Lee T.S., Lee J., Ann K.Y. Manufacture of polymeric con- crete on the moon // Acta Astronaut. 2015. V. 114. P. 60— 64. https://doi.org/10.1016/j.actaastro.2015.04.004
Montes C., Broussard K., Gongre M., Simicevic N., Mejia J., Tham J., Allouche E., Davis G. Evaluation of lunar regolith geopolymer binder as a radioactive shielding material for space exploration applications // Adv. Space Res. 2015. V. 56. N 6. P. 1212–1221. https://doi.org/ 10.1016/j.asr.2015.05.044
Grugel R.N. Integrity of sulfur concrete subjected to simulat- ed lunar temperature cycles // Adv. Space Res. 2012. V. 50. N 9. P. 1294–1299. https://doi.org/10.1016/j.asr.2012.06.027
Wilhelm S., Curbach M. Manufacturing of lunar concrete by steam // Conference: Earth and Space 2014: Engineering for Extreme Environments. 2014. P. 274–282. DOI: 10.1061/9780784479179.031
Jakus A.E., Koube K.D., Geisendorfer N.R., Shah R.N. Robust and elastic lunar and martian structures from 3D-printed regolith inks // Sci. Rep. 2017. V. 7. P. 44931. DOI: 10.1038/srep44931
Buchner C., Pawelke R.H., Schlauf T., Reissner A., Ma- kaya A. A new planetary structure fabrication process using phosphoric acid // Acta Astronaut. 2018. V. 143. P. 272–284. https://doi.org/10.1016/j.actaastro.2017.11.045
Cooper B.L. Sintering of lunar and simulant glass // AIP Conference Proceedings. 2008. P. 186–194. DOI: 10.1063/ 1.2844966
Pletka B.J. Processing of Lunar Basalt Materials, Re- sources of Near Earth Space. University of Arizona Press, 1993. P. 325–350.
Taylor L.A., Meek T.T. Microwave sintering of lunar soil: properties, theory, and practice // J. Aero. Eng. 2005. V. 18. N 3. P. 188–196. DOI: 10.1061/(ASCE)0893-1321 (2005)18:3(188)
Fateri M., Gebhardt A. Process parameters develop- ment of selective laser melting of lunar regolith for on- site manufacturing applications // Int. J. Appl. Ceram. Technol. 2015. V. 12. N 1. P. 46–52. DOI: 10.1111/ ijac.12326
Gualtieri T., Bandyopadhyay A. Compressive defor- mation of porous lunar regolith // Mater. Lett. 2015. V. 143. P. 276–278. https://doi.org/10.1016/j.matlet. 2014.11.153
Hintze P.E., Quintana S. Building a lunar or martian launch pad with in situ materials: recent laboratory and field studies // J. Aero. Eng. 2012. V. 26. N 1. P. 134–142. DOI:10.1061/(ASCE)AS.1943-5525.0000205
Hintze P.E. Building a vertical take off and landing pad us- ing in situ materials // Proc. Space Manuf. 14: Critical Technologies for Space Settlement. 2010. 13 p.
Krishna Balla V., Roberson L.B., O’Connor G.W., Trigwell S., Bose S., Bandyopadhyay A. First demonstra- tion on direct laser fabrication of lunar regolith parts // Ra- pid Prototyp. J. 2012. V. 18. N 6. P. 451–457. https://doi.org/ 10.1108/13552541211271992
Nakamura T., Smith B. Solar thermal system for lunar ISRU applications: development and field operation at Mauna Kea, Hi // 49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposi- tion. 2011. P. 433.
Cardiff E., Hall B. A dust mitigation vehicle utilizing di- rect solar heating // Joint Annual Meeting of Lunar Explora- tion Analysis Group-International Conf. on Exploration and Utilization of the Moon-Space Resources Roundtable. 2008. Р. 4100.
Meurisse A., Makaya A., Willsch C., Sperl M. Solar 3D printing of lunar regolith // Acta Astronaut. 2018. V. 152. P. 800–810. https://doi.org/10.1016/j.actaastro.2018.06.063
Carrier W. D. III. Particle size distribution of lunar soil // ASME J. Eng. Mater. Technol. 2003. V. 129. N 10. P. 956–959. https://doi.org/10.1061/(ASCE)1090-0241 (2003)129:10(956)
Allen C.C., Hines J.A., McKay D.S., Morris R.V. Sinte- ring of lunar glass and basalt // In Engineering, Construc- tion, and Operations in Space III, American Society of Civil Engineers. 1992. P. 1209–1218.
Allen C.C., Graf J.C., McKay D.S. Sintering bricks on the moon // In Engineering, Construction, and Operations in Space IV, American Society of Civil Engineers. 1994. P. 1220–1229.
Allen C.C., Morris R.V., McKay D.S. Oxygen extraction from lunar soils & pyroclastic glass // Journal of Geophysi- cal Research. 1996. V. 101. Iss. E11. P. 26085–26095. https://doi.org/10.1029/96JE02726
mai.ru — информационный портал Московского авиационного института © МАИ, 2018-2024 |