The article presents the results of the heat transfer study of a split rib under natural convection conditions. The purpose of this study is finding the effective ways to intensify heat transfer in the systems of electric power and radio-electronic equipment and determining optimal parameters of these devices operation. To achieve the goal, a number of tasks were formulated. These tasks include: developing of experimental test bench and methods for measurements conducting; performing a series of experiments. They also include the study of the initial air parameters and geometry of the rib, the effect of constraints stringency on the intensity of heat transfer; basic measurements errors determining; obtaining criterion dependencies for the heat transfer coefficient and Nusselt number computing. A series of experiments were conducted, which results allowed obtain an algorithm for determining and computing the main characteristics of the heat transfer process. The obtained experimental values deviation from the calculation performed according to the dependences of M. Mikheev and V. Isachenko dependencies did not exceed 6%. The conditions stringency factor, as well as of the optimal opening angle of the ribs determination, effect positively the process of heat transfer intensification. The heat transfer maximum was obtained at the casing rise of 40 mm within the range of 10 mm to 100 mm and the ribs opening angle of 30 degrees within the operating range of 10-60 degrees. Analysis of the flow under study in the area of laminar flow regime was performed in the course of this work. Criterion dependencies for heat transfer coefficient and Nusselt number computing were obtained. The heat transfer coefficient of the split rib is 2.3-4 times greater on the average, than this of the smooth rib.
Semenyako A. V., Pis’mennyy E. N., Terekh A. M., Rudenko A. I., Matsyuk G. N. Optimizatsiya geometricheskikh razmerov orebreniya plosko-oval’noj truby [Optimization of geometrical dimensions of finning of flat-oval tube]. Sovremennaya nauka: issledovaniya, idei, rezul’taty, tekhnologii – Modern science: research, ideas, results, technologies, 2012, no. 2 (10), pp.21–25. In Russ.
Pis’mennyj E. N., Burlej V. D., Baranyuk A. V., Te- rekh A. M., Polupan G. P., Karvahal M. I., Sil’va F. S. Teplovaya effektivnost’ poverkhnosti s plastincha- to-prosechennym orebreniem [Thermal efficiency of a sur- face with lamellar-sliced finning] Trudy 4‑j RNKT – Proceedings of the 4th National heat exchange conference, Moscow, 2006, vol. 6, pp. 281–284. In Russ.
Pis’menny E. N., Epic E.Ya., Baranyuk A. V., Te- rekh A. M., Burley V. D. Struktura potoka v poluotkrytykh ploskikh kanalakh s razreznymi stenkami ehlementov okhlazhdeniya REА [Flow structure in semi-open planar channels with cut-off walls of REA cooling elements]. Promyshlennaya teplotekhnika – Industrial heat engineering, 2007, vol.29, no. 4, pp. 45–52. In Russ.
Lopatin A. A. Osobennosti teploobmena v vynuzhden- no-konvektivnykh sistemakh okhlazhdeniya radioehlektronnogo oborudovaniya s chastichno razreznym orebreniem [Features of heat exchange in forcedly-convective systems of cooling the radio-electronic equipment with partially cutting ribbing]. Energetika Tatarstana– Power industry of Tatarstan, 2012, no. 3, pp. 30–34. In Russ.
Lopatin A. A. Teploobmen i soprotivlenie v sistemakh okhlazhdeniya elektrosilovogo oborudovaniya s razreznym orebreniem [Heat transfer and resistance in cooling systems of electric power equipment with cutter fins]. Vestnik Kazanskogo gosudarstvennogo tekhnicheskog universiteta im. A. N. Tupoleva – Bulletin of Kazan State Technical University named after A. N. Tupolev, 2013, no. 2–1, pp. 187–190. In Russ.
Mikheev M. A., Mikheeva I. M. Osnovy teploperedachi [Basics of heat transfer]. Moscow: Energiya, 1977. 344 p. In Russ.
Mukhachev G. A., Schukin V. K. Termodinamika i teplo‑ peredacha [Thermodynamics and heat transfer]. Moscow: Vysshaya shkola, 1991. 480 p. In Russ.
Popov I. A. Gidrodinamika i teploobmen vneshnikh i vnutrennikh svobodnokonvektivnykh vertikal’nykh techenij s intensifikatsiej. Intensifikatsiya teploobmena. Pod obshch. red. Yu. F. Gortyshova [Hydrodynamics and heat exchange of external and internal freely convective vertical flows with intensification. Heat transfer intensification. Gen. ed. Yu. F. Gortyshov]. Kazan: Center for Innovative Technologies, 2007. 326 p. In Russ.
Gortyshov Yu. F., Popov I.A., Usenkov R.A. Teplootdacha svobodnokonvektivnykh techenij pri nalichii poverkhnostnykh intensifikatorov [Heat transfer of free convection currents in the presence of surface intensifiers]. Izvestiya Vysshih uchebnyh zavedenij. Aviacionnaya tekhnika – News of higher educational establishments. Aviation equipment, 2003, no. 3, pp. 29–32. In Russ.
Dakhin V. V., Tsvetkov O. B., Krektunov O. P., Semashko S. E. Eksperimental’noe izuchenie svobodno-konvektivnogo okhlazhdeniya teplonagruzhennykh poverkhnostej [Experimental studying is free-convective cooling of the heat loaded surfaces]. Nauchnyj zhurnal NIU ITMO. Seriya: Protsessy i apparaty pishhevykh proizvodstv – Scientific journal of NIU ITMO. Series: Processes and apparatuses of food production, 2014, no. 2, pp. 7–15. In Russ.
Neilo R. V., Tuz V. E. Teploobmen i gidrodinamika odinochnogo gorizontal’nogo tsilindra v vertikal’nom shhelevom adiabatnom kanale v usloviyakh termogravitatsionnoj konvektsii [Heat exchange and hydrodynamics of a single horizontal cylinder in a vertical slit adiabatic channel under thermogravitational convection]. Trudy shestoj Rossijskoj nacional’noj konferencii po teploobmenu [Proceedings of the 6th Russian national conference on heat transfer], 2014, pp. 361–364. In Russ.
Terekhov V. V., Terekhov V. I. Free-convective heat transfer within a differentially heated vertical plane during additional heat supply through a bottom wall. High Temperature, 2012, vol. 50, no. 1, pp. 91–97.
Isachenko V. P., Osipova V.A., Sukhomel A. G. Teploperedacha [Heat transfer]. Moscow: Energiya, 1975. 488 p. In Russ.
mai.ru — informational site of MAI Copyright © 2009-2024 by MAI |