Temperature Field of Isotropic Wall, Separating Two Different Media, with Anisotropic Covering while Its Local Heating in Conditions of Heat Exchange with Ambient Environment.


Аuthors

Attetkov A. V.*, Volkov I. K.

Bauman Moscow State Technical University, MSTU, 5, bldg. 1, 2-nd Baumanskaya str., Moscow, 105005, Russia

*e-mail: fn2@bmstu.ru

Abstract

The article suggests a mathematical model of a temperature field forming in a two-layer divide wall, imitated by the isotropic wall of a constant thickness with anisotropic covering of one of its surfaces, subjected to the local thermal impact in conditions of heat exchange with ambient environment. It is demonstrated, that the temperature field of the system under study represents the sum of the two independent additive components. Analytical solution for the first of the additive components of the temperature field, formed due to the difference of the initial temperature of the two-layer system and temperatures of the ambient environments being separated, was obtained with integral Laplace transformation application. The second independent additive component of the temperature field, formed by the impact of the non-stationary spatially distributed thermal flow on the external surface of the anisotropic covering of the two-layer system while its initial temperature coincides with the temperatures of the ambient environments being separated, was identified. Solution of the corresponding problem of non-stationary thermal conductivity in analytically closed form was obtained applying integral transformations method. The obtained results confirm the earlier found effect of the temperature field «demolition» in anisotropic material with properties anisotropy of the general type.

Keywords:

isotropic dividing wall, anisotropic covering, local thermal impact, integral transformations

References

  1. Karslou G., Eger D. Teploprovodnost’ tvyordyh tel [Thermal conductivity of solids]. M.: Nauka, 1964. 488 p. In Russ.

  2. Lykov A.V. Teoriya teploprovodnosti [Theory of heat conductivity]. Moscow: Vysshayashkola, 1967. 600 p. In Russ.

  3. Kartashov E.M. Analiticheskie metody v teorii teploprovodnosti tvyordyh tel [Analytical methods in the theory of the thermal conductivity of solids]. M.: Vysshaya shkola, 2001. 552 p. In Russ.

  4. Formalev V.F. Teploprovodnost’ anizotropnyh tel. Analiticheskie metody resheniya zadach [Thermal conductivity of anisotropic bodies. Analytical methods for solving problems]. M.: Fizmatlit, 2014. 312 p.

  5. Аttetkov А.V., Volkov I.K. Temperaturnoe pole anizotropnoj okhlazhdaemoj plastiny, nakhodyashhejsya pod vozdejstviem vneshnego teplovogo potoka [Temperature field of anisotropic cooled plate under the influence of external heat flow]. Izv. RАN. Energetika – Proceedings of the Russian Academy of Sciences. Power Engineering, 2012, no. 6, pp. 108–117. In Russ.

  6. Аttetkov А.V., Volkov I.K. Temperaturnoe pole okhlazhdaemoj izotropnoj plastiny s anizotropnym pokrytiem, nakhodyashhejsya pod vozdejstviem vneshnego teplovogo potoka [Temperature field of a cooled isotropic plate with anisotropic covering under influence of external heat flow]. Teplovyeprotsessy v tekhnike – Thermal processes in engineering, 2013, vol. 5, no. 2, pp. 50–58. In Russ.

  7. Formalev V.F., Kolesnik S.A. Analytical investigation of heat transfer in an anisotropic band with heat fluxes assigned at the boundaries. Journal of Engineering Physics and Thermophysics, 2016, vol. 89, no. 4, pp. 975–984.

  8. Аttetkov А.V., Volkov I.K. Tret’ya kraevaya zadacha matematicheskoj teorii teploprovodnosti dlya dvukhslojnogo anizotropnogo poluprostranstva [The third boundary value problem of the mathematical theory of heat conduction for a two-layer anisotropic half-space]. Izv. RАN. Energetika – Proceedings of the Russian Academy of Sciences. PowerEngineering, 2017, no. 4, pp. 136–142. In Russ.

  9. Formalev V.F., Kolesnik S.A., Kuznetsova E.L. Time-dependent heat transfer in a plate with anisotropy of general form under the action of pulsed heat sources. High Temperature, 2017, vol. 55, no. 5, pp. 761–766.

  10. Formalev V.F., Kolesnik S.A., Kuznetcova E.L., Selin I.A. Аnaliticheskoe issledovanie teploperenosa v teplozashhitnykh kompozitsionnykh materialakh s anizotropiej obshhego vida pri proizvol’nom teplovompotoke [Heat transfer analytical investigation in heat protective composites with general type anisotropy under arbitrary heat loading]. Mekhanika kompozitsionnykh materialov i konstruktsij – Journal on Composite Mechanics and Design, 2017, vol. 23, no. 2, pp. 168–182. In Russ.

  11. Аttetkov А.V., Volkov I.K. Kvazistatsionarnoe temperaturnoe pole anizotropnoj sistemy s podvizhnoj granitsej, nagrevaemoj sredoj s ostsilliruyushhej temperaturoj [Quasistationary temperature field of the anisotropic system with a moving boundary of the heated environment with temperature oscillating]. Izv. RАN. Energetika – Proceedings of the Russian Academy of Sciences. PowerEngineering, 2017, no.5, pp. 144–155. In Russ.

  12. Koshlyakov N.S., Gliner E.B., Smirnov M.M. Uravneniya v chastnykh proizvodnykh matematicheskoj fiziki [Partial differential equations of mathematical physics]. Moscow: Vysshaya shkola, 1970. 712 p. In Russ.

  13. Pekhovich A.I., Zhidkih V.M. Raschyot teplovogo rezhima tvyordyh tel [Calculation of the thermal regime of solids]. L.: Energiya, 1968. 304 p. In Russ.

  14. El’sgol’c L.E. Differencial’nye uravneniya i variacionnoe ischislenie [Differential equations and calculus of variations]. Moscow: Nauka, 1969. 424 p. In Russ.

  15. Bellman R. Vvedenie v teoriyu matric [Introduction to the theory of matrices]. M.: Nauka, 1969. 368 p. In Russ.

  16. Fikhtengolts G.M. Kurs differentsial’nogo i integral’nogo ischisleniya. T. 2 [A Course of differential and integral calculus, Vol 2]. Мoscow: Fizmatgiz, 1962. 807 p. In Russ.

  17. Sneddon I. Preobrazovaniya Fur’e [Fourier transforms]. M.: Izd-voinostr. lit., 1955. 668 p. In Russ.

  18. Attekov A.V., Volkov I.K., Tverskaya E.S. Statsionarnoe temperaturnoe pole okhlazhdaemoj ortoropnoj plastiny s termicheski tonkoj termoaktivnoj prokladkoj i anizotropnym pokrytiem, nakhodyashhimsya pod vozdejstviem vneshnego teplovogo potoka [Stationary temperature field of a cooled orthotropic wall with a thermal active layer and anisotropic coating, under the influence of external heat flux] Izv. RАN. Energetika – Proceedings of the Russian Academy of Sciences. Power Engineering, 2013, no.5, pp. 136–145. In Russ.

  19. Аttetkov А.V.,Volkov I.K. Temperaturnoe pole anizotropnogo poluprostranstva, podvizhnaya granitsa kotorogo soderzhit plenochnoe pokrytie [Temperature field of anisotropic half-space, the moving boundary of which contains a film coating]. Izv. RАN. Energetika – Proceedings of the Russian Academy of Sciences. PowerEngineering, 2015, no. 3, pp. 39–49. In Russ.

  20. Аttetkov А.V., Volkov I.K. Temperaturnoe pole anizotropnogo poluprostranstva, podvizhnaya granitsa kotorogo nakhoditsya pod vozdejstviem vneshnego teplovogo potoka [Temperature field of an anisotropic half-space with movable boundary being under influence of external heat flux]. Teplovye protsessy v tekhnike – Thermal processes in engineering, 2015, vol. 7, no. 2, pp. 73–79. In Russ.

  21. АttetkovА.V.,Volkov I.K. Temperaturnoe pole anizotropnogo poluprostranstva s podvizhnoj granitsej, obladayushhej termicheski tonkim pokrytiem, pri ego nagreve vneshnej sredoj [Temperature field of the anisotropic half-space with the moving boundary, which has a thermally thin coating, heated by convection]. Teplovyeprotsessy v tekhnike – Thermal processes in engineering, 2016, vol. 8, no. 8, pp. 378–384. In Russ.

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI