Thermal state of the energy-releasing globular particle at convective-radiative heat transfer


Аuthors

Zarubin V. S.*, Novozhilova O. V., Sergeeva E. S., Soldatenko I. G.

Bauman Moscow State Technical University, MSTU, 5, bldg. 1, 2-nd Baumanskaya str., Moscow, 105005, Russia

*e-mail: zarubin@bmstu.ru

Abstract

Many technological processes of powder metallurgy, high-temperature synthesis of refractory materials and catalysis of chemical compounds are characterized by intense thermal interaction with liquid particles in a gas atmosphere (including air) medium. In this case, physicochemical processes can occur in the composition of the particles, accompanied by energy exposure caused by condensation of vapors or hardening of metals and alloys, exothermic chemical reactions, absorption of penetrating radiation, or radioactive decay substances. Their shape can be considered close to spherical. For example, molten metal melts with compressed air or inert gas.

Moreover, quite a few heterogeneous particles and materials with high thermal conductivity, their temperature state can be accepted uniformly, changing only in time. The thermal conductivity of a substance in the liquid phase is usually less than in the ordinary. The temperature state within them can also be considered homogeneous.

Heat transfer conditions on the particle surface in the general case. This article uses the equations of thermal equilibrium. Sharon particles are built on the basis of a mathematical model characterized by an uneven temperature state of particles, the intensity of energy vibrations depending on age and temperature by the Arrhenius law. A quantitative analysis of the mathematical model made it possible to reveal the temperature of particles during radiation, only convective and complex convective-radiation heat transfer.

Due to the unevenness of the heat balance, the temperature value must be taken into account. This value is necessary for applying the dimensionless temperature used in the Arrhenius law. Ultimately, it is possible to construct a dependence on the dimensionless temperature on the parameters of the system, on which its radiation radius, the Stefan constant ~ --- Boltzmann, and the preexponential factor in the Arrhenius law depend. It has been established that this dependence has a single extremum (maximum). If the air temperature is not set, then the air temperature can be killed to absolute zero. A similar result follows from the well-known mathematical model that describes the residual stars during the destruction of the thermonuclear energy reserve and turns into the so-called white dwarf, followed by a collapse to the black dwarf, which remains at a temperature of about 3 K, which has a CMB spectrum.

Keywords:

mathematical model, convective-radiation heat transfer, ball particle, instability of the temperature state.

References

  1. Titova Yu.V., Amosov A.P., Ermoshkin A.A., Markov Yu.M. Poluchenie nanoporoshka karbida kremniya i kompozitsii na ego osnove po azidnoj tekhnologii SVS [Obtaining nanopowder of silicon carbide and compositions based on it according to the azide technology of SHS]. Izvestiya vuzov. Poroshkovaya metallurgiya i funktsional’nye pokrytiya —University News. Powder metallurgy and functional coatings. 2013, no. 3, pp. 43–48. In Russ.

  2. Fedosova N.A., Koltsova E.M., Popova N.A., Zharikov E.V. Keramomatrichnye kompozity, modifitsirovannye uglerodnymi nanotrubkami: iskrovoe plazmennoe spekanie, modelirovanie, optimizatsiya [Ceramic matrix composites modified with carbon nanotubes: spark plasma sintering, modeling, optimization] // Novye Ogneupory — New Refractories. 2015, no. 12, pp. 13–17. https://doi.org/10.17073/1683-4518-2015-12-13-17 In Russ.

  3. Nasibulin A.G., Richard O., Kauppinen E.I., Brown D.P., J. K. Jokiniemi J.K., Altman I.S. Nanoparticle synthesis by copper (II) acetylacetonate vapor decomposition in the presence of oxygen. Aerosol Sci. Technol, 2002, vol. 36, no. 8, pp. 899— 911.

  4. Bondarenko V.P., Pavlotskaya E.G. Vysokotemperaturnyj sintez karbida vol’frama v metanovodorodnoj gazovoj srede [High-temperature synthesis of tungsten carbide in a methane-hydrogen gas medium]. Poroshkovaya metallurgiya — Powder Metallurgy, 1995, no.8/10, pp. 21–25. In Russ.

  5. Gonzalez D., Nasibulin A.G., Shandakov S.D., Jiang H., Queipo P., Kauppinen E.I. Spontaneous charging of single-walled carbon nanotubes in the gas phase. Carbon, 2006, vol. 44, no.10, pp. 2099— 2101. https://doi.org/10.1016/j.carbon.2006.04.021

  6. Isachenko V.P. Teploobmen pri kondensatsii [Heat transfer during condensation]. Moscow: Energy, 1977. 240 p. In Russ.

  7. Teoriya teplomassoobmena. Pod red. А.I. Leont’eva. [Theory of heat and mass transfer. Ed. A.I. Leontiev]. Moscow: Publishing House of MSTU. N.E. Bauman, 1997. 684 p. In Russ.

  8. Stephen D.H. Theory of Solidification. Port Chester: Cambridge University Press, 2001. 400 р.

  9. Ono A. Zatverdevanie metallov [Solidification of metals] Moscow: Metallurgy, 1980. 152 p. In Russ.

  10. Smirnov A.N., Pilyushenko V.L., Momot S.V. Zatverdevanie metallicheskogo rasplava pri vneshnikh vozdejstviyakh [Solidification of a metal melt under external influences]. Donetsk: VIK Publishing House, 2002. 169 p. In Russ.

  11. Frank-Kamenetsky D.A. Diffuziya i teploperedacha v khimicheskoj kinetike [Diffusion and heat transfer in chemical kinetics]. Moscow: Nauka, 1987. 502 p. In Russ.

  12. Schmidt F.K. Fiziko-khimicheskie osnovy kataliza [Physico-chemical basis of catalysis[. Irkutsk: Fractal, 2004. 402 p. In Russ.

  13. Derevich I.V., Fokina A.Yu. A mathematical model of a synthesis catalyst with local reaction centers. Mathematics and Mathematical Modeling, 2017, no. 3, pp. 13–31. DOI: 10.24108/mathm.0317.0000071

  14. Derevich I.V., Fokina A.Yu. Mathematical model of heat transfer in the catalyst granule with point reaction centers. Journal of Engineering Physics and Thermophysics, 2018, vol. 91, no 1, pp. 40–51.

  15. Eliseev V.N., Tovstonog V.A. Teploobmen i teplovye ispytaniya materialov i konstruktsij aehrokosmicheskoj tekhniki pri radiatsionnom nagreve [Heat transfer and thermal testing of materials and structures of aerospace engineering during radiation heating]. Moscow: Publishing House of MSTU. N.E. Bauman, 2014. 396 p. In Russ.

  16. Zarubin V.S., Kuvyrkin G.N., Savelyeva I.Yu. Temperaturnoe sostoyanie sloya poluprozrachnogo materiala pri vozrastayushhem s temperaturoj pogloshhenii pronikayushhego izlucheniya [Temperature condition of a layer of translucent material in case of radiation absorption that grows with temperature]. Teplovye protsessy v tekhnike — Thermal processes in engineering, 2017, no. 4, pp. 154— 162. In Russ.

  17. Zarubin V.S., Kuvyrkin G.N., Savelyeva I.Yu. Temperaturnoe sostoyanie sloya poluprozrachnogo materiala s zavisyashhimi ot temperatury teploprovodnost’yu i pogloshheniem pronikayushhego izlucheniya [Temperature state of the layer of translucent material with depending on temperature thermal conductivity and absorption of penetrating radiation]. Vestnik MGTU im.N.EH.Baumana. Seriya "Mashinostroenie — Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering, 2017, no. 6, pp. 99— 13. In Russ. DOI: 10.18698/0236-3941-2017-6-99-113

  18. Kirillov P.L., Theological G.P. Teplo-massoobmen v yadernykh ehnergeticheskikh ustanovkakh [Heat and mass transfer in nuclear power plants]. Moscow: Energoatomizdat, 2000. 456 p. In Russ.

  19. Ono S., Kondo S. Molekulyarnaya teoriya poverkhnostnogo natyazheniya v zhidkostyakh [The molecular theory of surface tension in liquids]. Moscow: Izdatel’stvo Inostrannoj Literatury, 1963. 229 p. In Russ.

  20. Kvasnikov I.A. Molekulyarnaya fizika [Molecular Physics]. Moscow: Editorial URSS, 2011. 230 p. In Russ.

  21. Amosov A.P., Samboruk A.R., Samboruk A.A., Ermoshkin A.A., Zakamov D.V., Krivolutsky K.S. Samorasprostranyayushhijsya vysokotemperaturnyj sintez nanoporoshka karbida titatna iz granulirovannoj shikhty [Self-propagating high-temperature synthesis of titanium carbide nanopowder from a granular charge] Izvestiya vuzov. Poroshkovaya metallurgiya i funktsional’nye pokrytiya —University News. Powder metallurgy and functional coatings,2013, no. 4, pp. 31–38. In Russ.

  22. Pogozhev Yu.S., Potanin A.Yu., Levashov E.A., Kovalev D.Yu. Osobennosti goreniya i strukturoobrazovaniya keramicheskikh materialov v sisteme Cr — Al — Si — B [Features of combustion and structure formation of ceramic materials in the Cr — Al — Si — B system]. Izvestiya vuzov. Poroshkovaya metallurgiya i funktsional’nye pokrytiya —University News. Powder metallurgy and functional coatings, 2014, no. 4, pp. 19–29. In Russ.

  23. Siegel R., Howell J.R. Thermal Radiation Heat Transfrer. Washington, Hemisphere Publishing Corporation, 1992. 1070 p.

  24. Stiller W. Arrhenius Equation and Non-Equlibrium Kinetics. BSB B. G. Teubner Verlagsgesellschaft, Leipzig, 1989. 160 p.

  25. Zeldovich Ya. B., Novikov I.D. Stroenie i ehvolyutsiya Vselennoj [The structure and evolution of the Universe]. Moscow: Nauka, 1975. 736 p. In Russ.

  26. Kalirai J.S. Astrophysics with White Dwarfs. Vancouver, University of British Columbia, 2004. 115 p.

  27. Attetkov A.V., Zarubin V.S., Kanatnikov A.N. Vvedenie v metody optimizatsii [ntroduction to optimization methods] Moscow: Finance and Statistics, INFRA-M, 2008. 272 p. In Russ.

  28. Attetkov A.V., Zarubin V.S., Kanatnikov A.N. Metody optimizatsii [Optimization methods]. Moscow: RIOR Publishing Center, 2012. 270 p. In Russ.

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI