Improvement of the k-ω SST turbulence model in prediction of flow around straight finite wings


Аuthors

Matyushenko A. A., Garbaruk A. V., Menter F. R., Smirnov P. E.

St.-Petersburg State Polytechnical University,

Abstract

The accurate prediction of airfoil characteristics in regimes near stall where flow is separated and maximal lift coefficient is achieved is an important task for aviation and wind power, as well as for turbomachinery flows. For prediction of these flows the Reynolds Averaged Navier- Stokes (RANS) approach in combination with different semi-empirical turbulence models is widely used in engineering practice. However, it is observed that the maximum lift coefficient and corresponding angle of attack are systematically overpredicted by these models which how- ever, can predict separated flow properly, for example k-ω SST model. The disagreement (error can be about 25%) is caused by a delay of turbulent boundary layer separation under adverse pressure gradient condition. Since the separation position is controlled by the turbulence model, special tuning of the models for such flows is required. Such modification of the SST model SST High Lift (SST-HL) was developed for improvement of prediction of airfoil characteristics near stall conditions. This modification consists in replacing the a1 constant of the SST model with the function AHL which accelerates the separation on the airfoils and does not destroy model calibration for simple wall-bounded and free-shear flows. The SST-HL model was tested for different types of flows covering free-shear, wall-bounded, separated flows and flow around different airfoils in wide range of angles of attacks. The SST-HL model demonstrates the satis- factory agreement with the experimental data and with the SST model for shear, wall-bounded and simple separated flows. In case of flows around airfoils the SST-HL model predicts earlier appearance of the three dimensional structures than the SST model which leads to significant improvement in prediction of the lift coefficient for separated flow regimes. For these regimes



the computational lift coefficient is in good agreement with the experimental data for all the considered airfoils (except of S805 and DU-97-W-300).

Keywords:

airfoil, stall, aerodynamic characteristics, RANS, turbulence models.

References

  1. Brutyan M.A., Vladimirova N.A., Potapchik A.V. Vliyanie volnistosti formy profilya na ego aerodinamiches- kie kharakteristiki pri malykh dozvukovykh skorostyakh [Influence of profile waviness on its aerodynamic character- istics at low subsonic speeds]. Uchenye Zapiski TSАGI — Scientific Journal of Central Aerohydrodynamic Institute, 2013, vol. XLIV, no. 5, pp. 39–44. InRuss.

  2. Baranov P.A., Guvernyuk S.V., Isaev S.A., Sudakov A.G., Usachev A.E. Modelirovanie periodicheskikh vikhrevykh struktur v slede za profilem [Simulation of periodic vortex structures in the wake of the profile]. Uchenye Zapiski TSАGI — Scientific Journal of Central Aerohydrodynamic Institute, 2014, vol. XLV, no. 2, pp. 63–77. In Russ.

  3. Matyushenko A.A., Kotov E.V., Garbaruk A.V. Аnaliz prichin snizheniya tochnosti pri raschete obtekaniya krylo- vykh profilej v ramkakh dvumernykh uravnenij Rejnol’dsa [Calculations of the airfoil profile flow using two- dimensional RANS: an analysis of the reasons for the accu- racy decrease], Nauchno-tekhnicheskie vedomosti Sankt- Peterburgskogo gosudarstvennogo politekhnicheskogo uni- versiteta. Fiziko-matematicheskie nauki — St. Petersburg Polytechnic University Journal — Physics and Mathematics, 2017, vol. 10, no. 1, pp. 20–30. In Russ.

  4. Zanin B.Yu., Kozlov V.V. Vikhrevye struktury v dozvu- kovykh otryvnykh techeniyakh [Vortex structures in subson- ic separated flows]. Novosibirsk: NSU Publishing and Print- ing Center, 2011. 114 p. In Russ.

  5. Matyushenko A.A., Garbaruk A.V., Smirnov P.E., Menter F.R. Chislennoe issledovanie vliyaniya trekhmer- nykh «griboobraznykh» struktur na kharakteristiki obtekani- ya aehrodinamicheskikh profilej [Numerical study of influence of three-dimensional mushroom-like cells on airfoil characteris- tics]. Teplovye protsessy v tekhnike — Thermal Processes in En- gineering, 2016, no. 1, pp. 31–36. In Russ.

  6. Matyushenko A.A., Garbaruk A.V. Adjustment of the k-ω SST turbulence model for prediction of airfoil charac- teristics near stall. J. Phys.: Conf. Ser., 2016, vol. 769, p. 012082. DOI:10.1088/1742-6596/769/1/012082

  7. Menter F.R., Kuntz M., Langtry R.B. Ten years of industri- al experience with the SST turbulence model. In Turbulence, heat and mass transfer. Vol. 4. Eds. K. Hanjalic, Y. Nagano,M. Tummers. Begell House, Inc., 2003. pp. 625–632.
  8. Menter F.R., Smirnov P.E., Liu T., Avancha R. A one- equation local correlation-based transition model. Flow. Turbulence and Combustion, 2015, vol. 95, no. 4, pp. 583–619. DOI 10.1007/s10494-015-9622-4

  9. Bell J.H., Mehta R.D. Development of a two-stream mixing layer from tripped and untripped boundary layers. AIAA J., 1990, vol. 28, no. 12, pp. 2034–2042.

  10. Wieghardt K., Tillmann W. On the Turbulent Friction Layer for Rising Pressure. NACA TM 1314, 1951.48 p.

  11. Vogel J., Eaton J.K. Combined heat transfer and fluid dy- namic measurements downstream of a backward-facing step. Journal of Heat Transfer, 1985, vol. 107, pp. 922–929.

  12. Driver D.M. Reynolds Shear Stress Measurements in a Separated Boundary Layer Flow. AIAA-91 1787, 1991.

  13. Gleyzes C., Capbern P. Experimental study of two AIRBUS/ONERA airfoils in near stall conditions. Part I: Boundary layers. Aerospace Science and Technology, 2003, vol. 7, no. 6, pp. 439–449. https://doi.org/10.1016/S1270-2 9638(03)00045-2

  14. Somers D.M. Design and Experimental Results for the S805 Airfoil. NREL/SR-440-6917, 1997. DOI: 10.2172/437668

  15. Somers D.M. Design and Experimental Results for the S825 Airfoil. NREL/SR-500-36346, 2005.

  16. Somers D.M. Design and Experimental Results for the S809 Airfoil. NRELSR-440-6918, 1997. DOI: 10.2172/437668

  17. Somers D.M. Design and Experimental Results for the S814 Airfoil. NREL/SR-440-6919, 1997.

  18. Timmer W.A., R.P.J.O.M. van Rooij. Summary of the Delft University Wind Turbine Dedicated Airfoils. AIAA Paper 0352, 2003.

  19. Winkelmann A.E. An experimental study of mushroom shaped stall cells. AIAA/ASME 3rd Joint Thermophysics, Fluids, Plasma and Heat Transfer Conference, St. Louis, Missouri, 1982.

  20. Menter F.R. Zonal Two Equation k-omega Turbulence Models for Aerodynamic Flows. AIAA Paper 93-2906, July 1993.

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI