Analysis of rotating coverplate receiver orifices influence on turbine cooling air supply system characteristics


Аuthors

Didenko R. A.1*, Piralishvili S. A.2**, Shahov V. G.3***

1. United Engine Corporation “Saturn”, 163, Lenin av., Rybinsk, Yaroslavl region, 152903, Russia
2. ,
3. Samara National Research University named after Academician S.P. Korolev, Samara, Russia

*e-mail: roman.didenko@npo-saturn.ru
**e-mail: piral@list.ru
***e-mail: shakhov@ssau.ru

Abstract

The preswirled cooling air supplied through discharge nozzles could be collected by a circu- lar array of rotating receiver orifices (CAO) in the coverplate or could be transferred directly through continuous annular slot (CAS) to the rotating diffuser formеd by turbine disc and coverplate. This paper presents a validated numerical and analytical study which investigates the differences between turbine cooling air supply system main characteristics with CAO or CAS. Computations were performed within the parameter range similar to gas-turbine engine operating conditions: 0.375<λT<0.98; 0.548<β0<2.5; 1.69·107<Reφ<2.33·107; 2.79·105<Cw<5.73·105.

Instead of classical analysis of discharge coefficient of rotating holes witch is mainly influenced by geometrical parameters the authors developed the unique technology comprises analyses of forerunning (pre-swirl nozzles) and next following (rotating diffuser) cooling air system unit characteristics. In order to describe throttling effect of the CAO on discharge nozzles it was used throttle mass flow CDR and pressure πN coefficients which are the ratios of real to hypothetical values mass flow and pressure ratio consequently. For rotating diffuser swirl ratio β was analyzed in the inlet and outlet regions.Finally an engineering approach for total pressure, total temperature of the cooling air before the blade, and system power consumption estimation for CAO and CAS cooling air system was showed. There has been detected that CAO reduce the swirl ratio β at the rotating diffuser outlet, and for the constant required pressure before the blade significantly increase temperature of the cooling air under the blade. It was also showed that main system characteristics depends upon the aspect area ratio of the pre-swirl nozzles and orifices.

References

  1. Danilchenko V.P., Lukachev S.V., Kovylov Yu.L., Post- nikov A.M., Fedorchenko D.G. Proektirovanie aviatsionnykh gazoturbinnykh dvigatelej [Designing aircraft gas turbine engines]. Samara: Publishing House of the Sa- mara Scientific Center RAS, 2008. 620 p. In Russ.

  2. Kutz K.J., Speer T.M. Simulation of the secondary air sys- tem of the aero engines. J. of Turbomachinery, 1994, vol. 116, pp. 306–315.

  3. Popp O., Zimmerman H., Kutz J. CFD Analysis of cover- plate receiver flow. J. of Turbomachinery, 1998, vol. 120, pp. 43–49.

  4. Dittman M., Dulenkopf K., Witting S. Discharge coeffi- cients of rotating short orifices with radiused and chamfered inlets. J. of Eng. of G.T. and Power, 2004, vol. 126, pp. 803–808.

  5. Bricaud C., Geis T., Dullenkopf K., Bauer H.-J. Meas- urement and analysis of aerodynamic and thermodynamic losses in pre-swirl system arrangements. Proceedings of Conference: ASME Turbo Expo 2007: Power for Land, Sea, and Air, 2007, paper no. GT2007-27191, pp. 1115–1126. DOI: 10.1115/GT2007-27191

  6. Geis T., Dittmann M., Dullenkopf K. Cooling air tempera- ture reduction in a direct transfer pre-swirl system. Proceed- ings of ASME, 2003, Paper GT2003-38231.

  7. Dittmann M., Geis T., Schramm V., Kim S., Wittig S. Discharge coefficients of the pre-swirl system in secondary air systems. ASME Paper 2001-GT-0122, 2001.

  8. Yan Y., Gord M.F., Lock G.D., Wilson M., Owen J.M. Fluid dynamics of a pre-swirl rotor-stator system. ASME J. Turbomachinery, 2003, vol. 125, no. 4, pp. 641–647. https://doi.org/10.1115/1.1578502

  9. Karabay H., Pilbrow R., Wilson M., Owen J.M. Perfor- mance of pre-swirl rotating-disc systems. J. Eng. Gas Tur- bines Power, 2000, vol. 122, no. 3, pp. 442–450. https://doi.org/10.1115/1.1285838

  10. Karabay H., Wilson M., Owen J. M. Predictions of effect of swirl ratio on flow and heat transfer in rotating cavity. Int. J. of Heat and Fluid Flow, 2001, vol. 22, pp.143—155.

  11. Smout P.D., Chew J.W., Childs P.R.N. ICAS-GT: A Eu- ropean Collaborative Research Programme on internal cool- ing air systems for gas turbines. Proceedings of Conference: ASME Turbo Expo 2002: Power for Land, Sea, and Air, 2002, paper no. GT2002-30479, pp. 907–914. DOI: 10.1115/GT2002-30479

  12. El-Sadi Н., Guevremont G., Marini R., Girgis S. CFD study of HPT blade cooling flow supply systems. ASME Pa- per GT2007-27228, 2007.

  13. Kiselev B.M. Zakruchennye odnomernye techeniya gaza [Swirling one-dimensional gas flows]. Moscow: Transactions of Central Aerohydrodynamic Institute, 1952. 24 р. In Russ.

  14. Samoilovich G.S., Morozov B.I. Koehffitsienty raskhoda otverstij vyravnivaniya davleniya v diskakh turbiny [Flow coefficients of pressure equalization holes in turbine disks]. Teploehnergetika, 1957, vol. 8, pp. 16–23. In Russ.

  15. Didenko R.A., Piralishvili Sh.A.,. Vinogradov K.A Prorabot- ka tekhnologii vybora optimal’nogo radiusa raspolozheniya ap- parata zakrutki v sisteme podvoda vozdukha k rabochej lopatke turbiny [Development of technology for choosing the optimal radius of pre-swirl nozzles in turbine cooling air delivery sys- tem]. Teplovye protsessy v tekhnike — Thermal Processes in Engineering, 2019, vol. 11, no. 11, pp. 514–526. In Russ. DOI: 10.34759/ТРТ-2019-11-11-514-526

  16. Didenko R.A., Piralishvili Sh.A., Shahov V.G. Аnaliz kharakteristik potoka mezhdu dvumya vrashhayushhimisya diskami v sisteme podvoda vozdukha k rabochej lopatke turbiny na osnove adaptirovannykh kriteriev podobiya [Characteristics analysis of a flow between two rotating discs in the air supply system to the turbine rotor blade based on adapted similarity criteria]. Teplovye protsessy v tekhnike — Thermal Processes in Engineering, 2019, vol. 11, no. 10, pp. 434–446. In Russ. DOI: 10.34759/ТРТ-2019-11- 10-434-446

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI