Combustion process analysis of solid metallized propellants


Аuthors

*, **, Voronetsky A. V.1***, A. 2****, A. 3*****

1. Bauman Moscow State Technical University, MSTU, 5, bldg. 1, 2-nd Baumanskaya str., Moscow, 105005, Russia
2. Institute of Problems of Chemical Physics of the Russian Academy of Sciences, IPCP RAS, 1, Academician Semenov av., Chernogolovka, Moscow region, 142432, Russia
3. Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

*e-mail: abramovmaks94@gmail.com
**e-mail: avbaykov@ciam.ru
***e-mail: vandreyv3@mail.ru
****e-mail: zaslav@icp.ac.ru
*****e-mail: tema.surowejcko@yandex.ru

Abstract

The article deals with the heat balance, occurring when solid gas-generator propellant with a high metal content burning. According to traditional concepts of solid propellant combustion, heat release in the condensed phase of solid propellant (С-phase) is ensured by the oxidizer decomposition (ammonium perchlorate) as a part of the propellant composition. The article demonstrates that ammonium perchlorate, being a part of gas-generator propellant, is unable to maintain the heat balance in the condensed phase of the propellant required for combustion.

To verify the assumption that the missing heat comes from the gaseous phase in the form of the heat flow, the article recounts the technique for computing the heat flow coming from the gaseous phase while the fuel burning and performs its computation. Low burning velocity, low heat generation in the gas generator chamber and moderate temperature of gases lead to the fact that gases formed while the fuel burning move in laminar mode in the free volume of the gas generator chamber. It allows employing the so-called «Zeldovich burning model» to determine the heat flow, entering from the gas phase to the condensed phase. As the calculations presented in the article show, the heat flow from the gas phase to the condensed phase, which forms due to the flammable gases burning, appears to be low. Metal particles carried from the solid fuel surface by the gas flow are not able to burn in the gaseous phase. Thus, while the solid fuel burning the gaseous phase is not able to maintain necessary for burning thermal balance in the condensed phase. The inference is being drawn in the article that combustion of the propellant under consideration is possible only with the presence of extra heat sources in the condensed phase. Based on the available literary data, oxidation of metal, as a part of the propellant, by the oxidant decomposition products directly under the condensed phase conditions is being considered as such source.

References

  1. Manelis G.B., Strunin V.A. Mekhanizm i Elementarnaya Teoriya Goreniya Smesevykh Tverdykh Topliv [The mechanism and elementary theory of combustion of mixed solid fuels]. Chernogolovka, Preprint IHF, USSR Academy of Sciences, 1975. 43 p. In Russ.

  2. Korobeinichev O.P., Chernov A.A., Emel'yanov I.D., Ermolin N.E., Trofimycheva T.V. Investigation of the kinetics and the chemical reaction mechanism in the flame of a mixed compound, based on ammonium perchlorate and polybutadiene rubber. Combustion, Explosion, and Shock Waves, 1990, vol. 26, no. 3, pp. 292-300. DOI: 10.1007/ BF00751367

  3. Manelis G.B., Nazin G.M., RubtsovYu.I., Strunin V.A. Termicheskoe Razlozhenie i Gorenie Vzryvchatykh Veshhestv i Porokhov [Thermal decomposition and combustion of explosives and gunpowder]. Moscow: Nauka, 1996. 222 p. In Russ.

  4. Surzhikov S.T., Krier H. Quasi-one-dimensional model of combustion of sandwich heterogeneous solid propellant. High Temperature, 2001, vol. 39, no. 4, pp. 586–595. DOI: 10.1023/A:1017996409325

  5. Surzhikov S.T., Krier H. Computational models of combustion of nonmetallized heterogeneous propellant. High Temperature, 2003, vol. 41, no. 4, pp. pp. 95–128. DOI: 10.1023/A:1022336923486

  6. Lengelle G., Duterque J., Trubert J.F. Combustion of Solid Propellants. 2002, no. RTO-EN-023, 63 p.

  7. Singh H., Shekhar H. Science and Technology of Solid Rocket Propellants. 2005. 256 p.

  8. Beckstead M.W., Puduppakkam K., Thakre P., Yang V. Modeling of combustion and ignition of solid – propellant ingredients. Progress in Energy and Combustion Science, 2007, vol. 33, pp. 497–551. https://doi.org/10.1016/j.pecs. 2007.02.003

  9. Gusachenko LK, Zarko V.E. Аnaliz sovremennykh modelej statsionarnogo goreniya smesevykh tverdykh topliv [Analysis of modern models of stationary combustion of mixed solid fuels]. Fizika goreniya i vzryva – Physics of combustion and explosion, 1986, vol. 22, no. 6, pp. 3–15. In Russ.

  10. Beckstead M.W Recent progress in modeling solid propellant combustion. Combustion, Explosion, and Shock Waves, 2006, vol. 42, no. 6, pp. 623–641. DOI: 10.1007/s10573-006-0096-5

  11. Reshetnikov S.M., Reshetnikov I.S. Аnatomiya Goreniya [Anatomy of burning]. Moscow: Neftegazsoftservis, 2014. 247 p. In Russ.

  12. Erokhin B.T., Lipanov A.M. Nestatsionarnye i Kvazistatsionarnye Rezhimy Raboty RDTT [Non-stationary and quasistationary modes of operation of solid propellant rocket motors]. Moscow: Mashinostroenie, 1977. 200 p. In Russ.

  13. Shlensky O.F., Maklashova I.V., Khishchenko K.V. Gorenie i Detonatsiya Materialov [Combustion and detonation of materials]. Moscow: Innovatsionnoe Mashinostroenie, 2018. 256 p. In Russ.

  14. Aliev A.V., Amarantov G.N., Akhmadeev V.F. et al. Vnutrennyaya Ballistika RDTT. Pod red. А.M. Lipanova, Yu.M. Milekhina [Internal ballistics of solid propellant rocket materials. Eds. A.M. Lipanova, Yu.M. Milekhina]. Moscow: Mashinostroenie, 2007. 504 p. In Russ.

  15. SolomonovYu.S., Lipanov A.M., Aliev A.V. et al. Tverdotoplivnye Reguliruemye Dvigatel'nye Ustanovki. Pod red. А.M. Lipanova, Yu.S. Solomonova [Solid adjustable propulsion systems. Eds. A.M. Lipanova, Yu.S. Solomonova]. Moscow: Mashinostroenie, 2011. 416 p. In Russ.

  16. Silin N.A., Kashporov L.Ya., Gladun V.D. et al. Gorenie Metallizirovannykh Geterogennykh Kondensirovannykh Sistem [Combustion of metallized heterogeneous condensed systems]. Moscow: Mashinostroenie, 1982. 232 p. In Russ.

  17. Alexandrov V.N., Bytskevich V.M., Verkholomov V.K. et al. Integral'nye Pryamotochnye Vozdushno-Reaktivnye Dvigateli na Tverdykh Toplivakh. Osnovy Teorii i Rascheta. Pod red. L.S. YAnovskogo [Integrated ramjet engines – solid fuels. Fundamentals of theory and calculation. Ed. L.S. Yanovsky]. Moscow: Akademkniga, 2006. 343 p. In Russ.

  18. Sorokin V.A., Yanovsky L.S., Yagodnikov D.A. et al. Proektirovanie i Otrabotka Raketno-Pryamotochnykh Dvigatelej na Tverdom Toplive [Design and development of solid-propellant rocket-propelled engines]. Moscow: Publishing House of MSTU. N.E. Bauman, 2016. 317 p. In Russ.

  19. Tsutsuran V.I. Vvedenie v Tekhnologiyu Ehnergonasyshhennykh Materialov [Introduction to energy-rich materials technology]. Moscow: Publishing House of the Ministry of Defense of the RF, 2007. 300 p. In Russ.

  20. Merzhanov A.G., Khaikin B.I. Teoriya Voln Goreniya v Gomogennykh Sredakh [Theory of combustion waves in homogeneous media]. Chernogolovka: Merzhanov Institute of Structural Macrokinetics and Materials Science RAS, 1992. 161 p. In Russ.

  21. Gerasimov Y.I., Dreving V.P., Eremin E.N. Kurs Fizicheskoj Khimii [Physical chemistry course]. Moscow: Khimiya, 1964. vol. 1.

  22. Sinditsky V.P. About the nature of the leading reaction during the combustion of energy materials // http://www.kinetics. nsc.ru/conferences/semkpg/Papers/Op-10rus.pdf

  23. Guhman A.A., Zaitsev A.A. Obobshhennyj Analiz [The generalized analysis]. Moscow: Factorial, 1998. 304 p. In Russ.

  24. Warnatz J., Maas U., Dibble R.W. Combustion. Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation. Springer-Verlag Berlin Heidelberg, 2001, 378 p. (Russ. ed.: Varnaz Y., Maas U., Dibble R. Gorenie. Fizicheskij i khimicheskij aspekty, modelirovanie, ehksperimenty, obrazovanie zagryaznyayushhikh veshhestv. Moscow: FIZMATLIT, 2006. 352 p.)

  25. Barenblatt G.I. Аvtomodel'nye Yavleniya – Analiz Razmernostej i Skejling [Self-made phenomena dimensional analysis and scaling]. Dolgoprudny: Publishing House "Intellect", 2009. 216 p. In Russ.

  26. Kamke E. Spravochnik po Obyknovennym Differentsial'nym Uravneniyam [Handbook of ordinary differential equations]. Moscow: Nauka, 1971. 576 p. In Russ.

  27. Kolmogorov A.N., Fomin S.V. Elementy Teorii Funktsij i Funktsional'nogo Analiza [Elements of function theory and functional analysis]. Moscow: Nauka, 1981. 624 p. In Russ.

  28. Kolmogorov A.N., Petrovsky I.G., Piskunov N.S. Issledovanie uravneniya diffuzii, soedinennoj s vozrastaniem kolichestva veshhestva, i ego primenenie k odnoj biologicheskoj probleme [Investigation of the diffusion equation, combined with an increase in the amount of substance, and its application to a biological problem]. Sbornik «Teoriya goreniya i vzryva» Collected articles “Theory of combustion and explosion". Moscow: Nauka, 1981. pp. 213–242. In Russ.

  29. Goodwin D.G., Moffat H.K., Speth R.L. Cantera: An object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes. 2017. Version 2.3.0. DOI: 10.5281 / zenodo.170284. http://www.cantera.org, 2017.

  30. Kee R.J., Grear J.F., Smooke M.D., Miller J.A. A Fortran Program for Modeling Steady, Laminar, One Dimensional, Premixed Flames. Sandia Report SAND85-8240. Livermore. CA, 1989. 88 p.

  31. Leipunsky O.I O zavisimosti ot davleniya skorosti goreniya chernogo porokha [On the dependence of the burning speed of black powder on pressure]. Zhurnal fizicheskoj khimii – Journal of physical chemistry, 1960, vol. 34, no. 1, pp. 177–181. In Russ.

  32. Zakharov V.M., Klyachko L.A. K voprosu o skorosti goreniya model'nogo smesevogo porokha [On the burning rate of model mixed powder]. Fizika goreniya i vzryva – Physics of combustion and explosion,1972, no. 1, pp. 15–26. In Russ.

  33. KashporovL.Ya., Klyachko L.A., Silin N.A., Shakhidzhanov E.S. Gorenie smesej magniya s nitratom natriya. I Skorost' goreniya dvukhkomponentnykh smesej magniya s nitratom natriya [Combustion of mixtures of magnesium with sodium nitrate. I The burning rate of two-component mixtures of magnesium with sodium nitrate]. Fizika goreniya i vzryva – Physics of combustion and explosion, 1994, no. 5, pp. 40–49. In Russ.

  34. Voronetsky A.V., Suchkov S.A., Filimonov L.A. Osobennosti techeniya sverkhzvukovykh potokov v uzkikh tsilindricheskikh kanalakh [Supersonic flows features in narrow cylindrical ducts]. Inzhenernyj zhurnal: nauka i innovatsii – Engineering Journal: Science and Innovation, 2013, no. 4 (16). DOI: 10.18698 / 2308-6033-2013-4-695

  35. Voronetskiy A.V. Metod sravnitel'noj otsenki ehffektivnosti goreniya melkodispersnogo kondensirovannogo goryuchego v kamerakh RPD proizvol'noj geometrii [Method of comparative analysis of highly dispersed condensed fuel combustion efficiency in arbitrary geometry solid propellant ramjet burners]. Nauka i obrazovanie – Science and Education, 2016, no. 1. DOI: 10.7463/0116.0830993

  36. Yagodnikov D.A. Vosplamenenie i Gorenie Poroshkoobraznykh Metallov [Ignition and combustion of powdered metals]. Moscow: Publishing house MSTU named after N.E. Bauman, 2009. 432 p. In Russ.

  37. Edwards R., Bobko R. Radiant heat transfer from an isothermal dispersed medium. Proceedings of the American Society of Mechanical Engineers. Series C, 1984, vol. 4, no. 4, pp. 23–33.

  38. Shevchuk V.G., Goroshin S.V., Klyachko L.A. et al. Skorost' rasprostraneniya plameni v gazovzvesyakh chastits magniya [Flame propagation velocity in gas-suspended magnesium particles]. Fizika goreniya i vzryva – Physics of combustion and explosion, 1980, no. 1, pp. 57–63. In Russ.

  39. Ozisik M.N. Thermal Radiation Transfer and Interactions with Conduction and Convection. John Wiley & Sons, New York, 1973. 587 p. (Russ. ed. Ozisik M.N. Slozhnyj teploobmen. Moscow: Mir, 1976. 615 p.)

  40. Baikov A.V., Sharov M.S., Yanovskii L.S., Zholudev A.F., Kislov M.B., Puchkovskii I.V., Shikhovtsev A.V. Burning of solid propellant in gas generator of an air-breathing engine at large content of metal. Russian Journal of Applied Chemistry, 2019, vol. 92, no. 5. pp. 602–606. DOI: 10.1134/ S0044461819050037

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI