Numerical simulation of fuel ignition the scramjet engine combustion chamber


Аuthors

Molchanov A. M.*, Gribinenko D. V.**, Yanyshev D. S.***

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

*e-mail: alexmol_2000@mail.ru
**e-mail: dgribinenko@gmail.com
***e-mail: dyanishev@gmail.com

Abstract

The article tackles the problem of fuel ignition in the supersonic flow in the scramjet combustion chamber. The model engine represents a flat channel, consisting of the supersonic diffuser combustion chamber and supersonic nozzle. A pylon, from which right flat end the gaseous hydrogen is being fed, is situated in the combustion chamber. Two different 2D simulation models are being employed. Both models are built based on Reynolds (Favre) averaged Navier-Stokes equations with SST turbulence model as a flux closure. The main difference between these models consists in implementing various chemical kinetics models. To account for chemical reactions, the first model is being supplemented by the EDM chemical kinetics model equations, while the second one is being supplemented by the EDC chemical kinetics model equations. The adequacy of these mathematical models of chemical kinetics in case of fuel ignition was studied. The article demonstrates that the results obtained by the simplified model of the chemical kinetics (EDM) differ greatly from the results obtained with the full model (EDC). The supersonic diffuser angle variation impact on the fuel ignition in the scramjet engine combustion chamber was studied was studied. The article shows that even the slight changing in the inlet unit angle affects significantly the instant of ignition and fuel combustion intensity. Comparison of various mechanisms of hydrogen combustion chemical kinetics was performed. The article shows that fuel ignition occurs higher upstream, and burning is more intensive while the simplified mechanism application compared to the full mechanism employing.

Keywords:

supersonic flow, combustion, ignition, chemical kinetics

References

  1. Oevermann M. Numerical investigation of turbulent hydrogen combustion in a SCRAMJET using flamelet modeling. Aerospace Science and Technology, 2000, vol. 4, no. 7, pp. 463–480.

  2. Magnussen B.F., Hjertager B.H. On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion. Symposium (international) on Combustion. Elsevier, 1977, vol. 16, pp. 719–729.

  3. Hyslop P. CFD modelling of supersonic combustion in a scramjet engine. Final Report, 1998, pp. 1–59.

  4. Khan A.A., Venkat Iyengar S. Numerical simulation of supersonic combustion of hydrogen in a vitiated air stream. 11th AeSI Annual CFD Symposium. Inidian Institute of Science, Bangalore, India, 2009. 7 р.

  5. Zvegintsev V.I. Gazodinamicheskie ustanovki kratkovremennogo dejstviya. V dvux chastyax. Chast` 1. Ustanovki dlya nauchny`x issledovanij. Novosibirsk. Parallel`. 2014. 551 р. In Russ.

  6. Magnussen B.F. The eddy dissipation concept: A bridge between science and technology. Norwegian University of Science and Technology Trondheim, 2005. 25 р.

  7. Connaire M.O., Curran H.J., Simmie J.M., Pitz W.J., Westbrook C.K. A comprehensive modeling study of hydrogen oxidation. International Journal of Chemical Kinetics, 2004, vol. 36, pp. 603–622.

  8. Molchanov A.M. Numerical simulation of supersonic chemically reacting turbulent jets. AIAA Paper 2011-3211, 2011.

  9. Menter F.R. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 1994, no. 32 (8), pp. 1598–1605.

  10. Bykov L.V., Molchanov A.M., Yanyshev D.S. Chislenny`j metod rascheta sverxzvukovy`x turbulentny`x techenij s ximicheskimi reakciyami. Vestnik Moskovskogo aviatsionnogo instituta, 2010, vol. 17, no. 3, pp. 108–119. In Russ.

  11. Bykov L.V., Molchanov A.M., Platonov I.M., Yanyshev D.S. Influence of geometric parameters and chemical kinetics model on combustion in supersonic flow. Int. Journal of Fluid Mechanics Research, 2017, no. 44 (6), pp. 553–563.

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI