The presented article considers the heat exchange in various types of combinations of materials to ensure thermal protection. The purpose of such kinds of combinations of materials studying consists in obtaining such type of its structure, which meets the thermal insulation requirements for implementing in the structures operating under extremely low or high temperatures.
As the result of the convective thermal exchange study with the selected elements, it was revealed that interchangeability of the thermal exchange processes of material among themselves is characteristic for thermal insulation enhancing. The results demonstrate the element with layered combination of materials has high thermal insulation index. Interaction of materials with the opposite thermal conductivity characteristics, peculiar to the elements under consideration with layered combination of materials, is necessary to keep a positive temperature of the element. Presumably, the retention of temperature is stipulated by the fact that a material with high thermal insulation indices does not allow the next layer of material cooling (the material with low thermal conductivity). A material with low thermal conductivity indices in its turn transfers heat to a material with high thermal insulation indices due to its high thermal conductivity characteristics.
Unlike an element with a layered combination of materials, an element with a structured combination of materials has low thermal insulation indices due to the «discontinuity» of the heat exchange process. As the result, a summation of the processes of materials heat transfer occurs, depending on their thermal conductivity characteristics.
According to the obtained results of the study on convective heat transfer of the considered thermal insulation elements, it can be assumed that the introduction of an element with a solid material as a heat-insulating layer for the skin of aircraft products is unacceptable. When considering elements, which involve two or more different materials in the heat exchange process, the most effective element for the insulating skin layer is the element with a layered combination of materials.
Babashov V.G., Varrik N.M. Novosti materialovedeniya. Nauka i tekhnika, 2016, no. 3, pp. 1‒10.
Attalla M. Experimental investigation of heat transfer and pressure drop of SiO2/water nanofluid through conduits with altered cross-sectional shapes. Heat Mass Transfer, 2019, vol. 55, pp. 3427–3442.
Zhang Y., Zhang X., Li M. et al. Research on heat transfer enhancement and flow characteristic of heat exchange surface in cosine style runner. Heat Mass Transfer, 2019, vol. 55, pp. 3117–3131.
Davoodi H., Yaghoubi M. Experimental and numerical study of natural convection heat transfer from arrays of zig-zag fins. Heat Mass Transfer, 2019, vol. 55, pp. 1913–1926.
Hooman K., Sadafi H., Mancin S. et al. Theoretical analysis of free convection in a partially foam-filled enclosure. Heat Mass Transfer, 2019, vol. 55, pp. 1937–1946.
Woodfield P.L., Masanori Monde, Yuichi Mitsutake. Time and space resolution of analytical solution for two-dimensional inverse heat conduction problem. International Heat Transfer Conference, 2006, vol. 13.
Nicola Bianco, Gaetano Contento, Salvatore Cunsolo, Marcello Iasiello, Vincenzo Naso, Maria Oliviero. Heat transfer enhancement in open-cell foams. Annual review of heat transfer, 2017, vol. 20.
Kolychev A.V., Kernozhitskiy V.A., Levikhin A.A. Vestnik Moskovskogo aviatsionnogo instituta, 2018, vol. 25, no. 3, pp. 143‒150.
Kruglov K.I. Vestnik Moskovskogo aviatsionnogo instituta, 2017, vol. 24, no. 4, pp. 63‒69.
Dul’nev G.N., Novikov V.V. Protsessy perenosa v neodnorodnykh sredakh (Transport processes in heterogeneous environments), Leningrad: Energoatomizdat, 1991. 285 p.
GOST 9573-2012. Plyty iz mineral’noy vaty na sinteticheskom svyazuyushem teploizolyatsionnyye. Tekhnicheskiye
usloviya. [Thermal insulating plates of mineral wool on syntetic binder. Specifications, State standard 9573-2012]. Moscow: Standartinform, 2019. 12 p.
GOST 10499-95. Isdeliya teploizolyatsionnyye iz steklyannogo shtapel’nogo volokna. Tekhnicheskiye usloviya. [Heat insulating products made of glass staple fibre. Specifications, State standard 10499-95]. Moscow: Izdatel’stvo standartov, 1996. 12 p.
GOST 20196-87. Plyty teploizolyatsionnyye iz penoplasta na osnove rezol’nykh fenoloformal’degidnykh smol. Tekhnicheskiye usloviya. [Foam plastic heat-insulating slabs based on resol phenolformaldehyde resins. Specifications, State standard 20196-87]. Moscow: Izdatel’stvo standartov, 1987. 9 p.
Chirkin V.S. Teplofizicheskie svojstva materialov. Spravochnik. [Thermophysical properties of materials. Guide]. Moscow: FIZMATGIZ, 1959. 356 p.
Beleckij V.M., Krivov G.A. Aljuminievye splavy (sostav, svojstva, tehnologija, primenenie). Spravochnik. [Aluminum alloys (composition, properties, technology, application)]. Krasnoyarsk: KOMINTEH, 2005. 365 p.
Kiselev B.A. Stekloplastiki. [Fiberglass plastic]. Moscow: Gosudarstvennoe nauchno-tekhnicheskoe izdatel’stvo himicheskoj literatury, 1961. 240 p.
Lykov A.V. Teorija teploprovodnosti. [Theory of thermal conductivity]. Moscow: Vyssh. Shk., 1967. 600 p.
Berkovskij B.M., Nogotov E.F. Raznostnye metody issledovanija zadach teploobmena. [Difference methods for studying heat transfer problems]. Minsk: Nauka i tehnika, 1976. 144 p.
Kuznecov G.V., Sheremet M.A. Raznostnye metody reshenija zadach teploprovodnosti: uchebnoe posobie. [Difference methods for solving heat conduction problems: tutorial]. Tomsk: TPU, 2007. 172 p.
Samarskij A.A., Vabishhevich P.N. Vychislitel’naja teploperedacha. [Сomputational heat transfer]. Moscow: Editorial URSS, 2003. 785 p.
mai.ru — informational site of MAI Copyright © 2009-2024 by MAI |