Heat transfer analysis under mechanical impact on vacuum shield insulation


Аuthors

Zinkevich V. P.1*, Nenarokomov A. V.2**

1. Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia
2. ,

*e-mail: zvera95@list.ru
**e-mail: nenarokomovav@mai.ru

Abstract

The purpose of the work consists in presenting a new technique for the known mathematical models of multilayer insulation improving. Multilayer insulation (MLI) demonstrates very high thermal performance as a spacecraft thermal control element. This type of insulation consists of numerous reflecting layers separated by thin spacers. However, manufacturing technology such as a seam, or overlap degrades its effectiveness. Local heat losses result fr om the MLI thermal conductivity enhancement caused by the layers compression. In this case the local heat flux through the MLI is being computed with empirical equations. However, these predictive models now employed for the said computations do not account for the prime cause of the heat flux enhancement and depend on the of experimental data quality. At present, more information from the thermal tests data is required to be obtained due to the high tryout cost. The new model will be of help in doing it. The model will account for the heat transfer mechanism in the near zone. The heat flux through the c ompressed MLI blanket may b e c omputed as a sum o f a c onductive part, far zone radiation and near zone radiation. Enhancement of the total heat flux through the compressed insulation will consist of the conductive part enhancement and the near zone radiation. The MLI layers are being considered as plates separated by a vacuum gap. In this case, the surface polaritons of one layer interact with surface polaritons of the next layer and the radiative heat flux surmounts the blackbody lim it. This will allow calculating the heat flux components with better accuracy since all previous computations subtract the radiative part from the total heat flux, obtained while tests, for the conductive heat flux obtaining.

Keywords:

multilayer insulation, compressed insulation, heat flux, near-field radiation, polaritons

References

  1. Gritsenko E.A. General’nyi konstruktor N.D. Kuznetsov. Izvestiya Samarskogo nauchnogo tsentra RAN, 1999, no. 1, pp. 15‒22.
  2. Tsybizov Yu.I. Budushchee v proshlom. Konstruktor Nikolai Dmitrievich Kuznetsov i ego shkola (The future is in the past. Designer Nikolai Dmitrievich Kuznetsov and his school). Samara, ERA, 2020. 160 p.
  3. Alemasov V.E., Dregalin A.F., Tishin A.P. Teoriya raketnykh dvigatelei (Theory of rocket engines), in Glushko V.P. (ed). Moscow, Mashinostroenie, 1989. 464 p.
  4. Dobrovol’skii V.M. Zhidkostnye raketnye dvigateli. Osnovy proektirovaniya (Liquid rocket engines. Design basics), in Yagodnikov D.A. (ed). Moscow, Izd-vo MGTU im. N.E. Baumana, 2005. 448 p.
  5. Aliev I.N. O vozmozhnosti ispol’zovaniya elektromagnitnogo polya dlya ochistki ot gazovykh puzyrei setok v toplivnykh sistemakh raket. Magnitnaya gidrodinamika, 1996, no. 3, pp. 376‒378.
  6. Altunin V.A., Altunin K.V., Aliev I.N., Gortyshov Yu.F., Dresvyannikov F.N., Obukhova L.A., Tarasevich S.E., Yanovskaya M.L. Analiz issledovanii elektricheskikh polei v razlichnykh sredakh i usloviyakh (Obzor). IFZh, 2012, Vol. 85, no. 4, pp. 881‒896.
  7. Altunin V.A., Altunin K.V., Aliev I.N., Gortyshov U.F., Dresvyannikov F.N., Obukhova L.A., Tarasevich S.E., Yanovskaya M.L. Analysis of investigations of electric fields in different media and conditions. Journal of Engineering Physics and Thermophysics, 2012, Vol. 85, no. 4, pp. 959–976.
  8. Altunin V.A., Altunin K.V., Obukhova L.A., Platonov E.N., Yanovskaya M.L. Nekotorye puti povysheniya resursa i nadezhnosti dvigatelei i energoustanovok na zhidkikh i gazoobraznykh uglevodorodnykh goryuchikh i okhladitelyakh nazemnogo, aviatsionnogo, aerokosmicheskogo i kosmicheskogo bazirovaniya. Vestnik KGTU im. A.N. Tupoleva, 2013, no. 4. pp. 29‒34.
  9. Altunin V.A., Altunin K.V., Aliev I.N., Shchigolev A.A., Platonov E.N. Razrabotka sposobov uvelicheniya resursa i nadezhnosti sistem smazki dvigatelei vnutrennego sgoraniya nazemnogo transporta. Izvestiya vuzov. Mashinostroenie, 2015, no. 10 (667), pp. 48‒58.
  10. Altunin V.A., Altunin K.V., Gortyshov Yu.F., Shchigolev A.A., Yusupov A.A., Yanovskaya M.L. Vliyanie magnitnykh i elektrostaticheskikh polei na teplovye protsessy v aviatsionnykh motornykh maslakh dvigatelei i energoustanovok letatel’nykh apparatov. Vestnik Kazanskogo gosudarstvennogo tekhnicheskogo universiteta im. A.N. Tupoleva, 2016, no. 1, pp. 60‒66.
  11. Altunin V.A., Altunin K.V., Aliev I.N., Platonov E.N., Kokhanova S.Ya., Yanovskaya M.L. Razrabotka sposobov bor’by s termoakusticheskimi avtokolebaniyami davleniya v toplivno-ohlazhdayushchih kanalah dvigatelej i energoustanovok letatel’nyh apparatov nazemnogo, vozdushnogo, aerokosmicheskogo i kosmicheskogo primeneniya. Izvestiya vuzov. Mashinostroenie, 2017, no. 10 (691), pp. 77–90.
  12. Altunin V.A., Altunin K.V., Aliev I.N., Abdullin M.R., Davlatov N.B., Platonov E.N., Yanovskaya M.L. Nekotorye puti povysheniya effektivnosti zhidkikh i gazoobraznykh uglevodorodnykh i azotosoderzhashchikh goryuchikh dlya dvigatelei letatel’nykh apparatov. Teplovye protsessy v tekhnike, 2019, Vol. 11, no. 10, pp. 453‒479.
  13. Altunin V.A., Altunin K.V., Abdullin M.R., Chigarev M.R., Aliev I.N., Yanovskaya M.L. Metodiki rascheta teplovykh protsessov v usloviyakh estestvennoi konvektsii gazoobraznogo metana pri vliyanii elektrostaticheskikh polei. Inzhenernyi zhurnal: nauka i innovatsii, no. 7 (115). DOI: 10.18698/2308-6033-2021-7-2094
  14. Altunin V.A., Altunin K.V., L’vov M.V., Shchigolev A.A., Aliev I.N., Yanovskaya M.L. Problemy sistem smazki aviatsionnykh dvigatelei. Teplovye protsessy v tekhnike, 2021, Vol. 13, no. 8, pp. 357‒384.
  15. Altunin K.V. Issledovanie vliyaniya elektrostaticheskikh polei na teplootdachu pri estestvennoi konvektsii kerosina. Teplovye protsessy v tekhnike, 2020, Vol. 12, no. 9, pp. 403‒410.
  16. Altunin K.V. Funktsional’no-stoimostnoi analiz gorelochnykh ustroistv i forsunok: monografiya (Functional and cost analysis of burner devices and injectors: monograph). Kazan, Izd-vo KNITU — KAII, 2020. 156 p.
  17. Bol’shakov G.F. Khimiya i tekhnologiya komponentov zhidkogo raketnogo topliva (Chemistry and technology of liquid rocket fuel components). Leningrad, «Khimiya», 1983. 320 p.
  18. Bol’shakov G.F. Fiziko-himicheskie osnovy obrazovaniya osadkov v reaktivnyh toplivah (Physico-chemical bases of precipitation formation in jet fuels). Leningrad, Khimiya, 1972. 232 p.
  19. Bakulin V.N., Dubovkin N.F., Kotova V.N., Sorokin V.A., Frantsevich V.P., Yanovskii L.S. Energoemkie goryuchie dlya aviatsionnykh i raketnykh dvigatelei (Energy-intensive fuels for aircraft and rocket engines), in Yanovskii L.S. (ed). Moscow, FIZMATLIT, 2009. 400 p.
  20. Bakulin V.N., Breshchenko E.M., Dubovkin N.F., Favorskii O.N. Gazovye topliva i ikh komponenty. Svoistva, poluchenie, primenenie, ekologiya: spravochnik (Gas fuels and their components. Properties, production, application, ecology: handbook). Moscow, Izdatel’skii dom MEI, 2009. 614 p.
  21. Bratkov A.A., Seregin E.P., Gorenkov A.F. Khimmotologiya raketnykh i reaktivnykh topliv (Chemmotology of rocket and jet fuels), in Bratkov A.A. (ed). Moscow, Khimiya, 1987. 304 p.
  22. Dubovkin N.F., Malanicheva V.G., Mansur Yu.P., Fedorov E.P. Fiziko-himicheskie i ekspluatacionnye svojstva reaktivnyh topliv. Spravochnik (Physico-chemical and operational properties of jet fuels. Guide). Moscow, Khimiya, 1985. 240 p.
  23. Dubovkin N.F. Yaponskii, L.S. Shigabaev T.I., Galimov F.M., Ivanov V.F. Inzhenernye metody opredeleniya fiziko-himicheskih i ekspluatacionnyh svojstv topliv (Engineering methods for determining the physico-chemical and operational properties of fuels). Kazan, Master Lain, 2000. 378 p.
  24. Myakochin A.S., Yanovskii L.S. Obrazovanie otlozhenii v toplivnykh sistemakh silovykh ustanovok i metody ikh podavleniya (Formation of deposits in fuel systems of power plants and methods of their suppression). Moscow, MAI, 2001. 222 p.
  25. Yanovskii L.S., Dubovkin N.F., Galimov F.M., Shigabiev T.N., Gortyshov Yu.F. Inzhenernye osnovy aviatsionnoi khimmotologii (Engineering fundamentals of aviation chemmotology). Kazan, Izd-vo Kazanskogo universiteta, 2005. 714 p.
  26. Yanovskii L.S., Kharin A.A. Khimmotologicheskoe obespechenie nadezhnosti aviatsionnykh gazoturbinnykh dvigatelei: monografiya (Chemmotological assurance of reliability of aviation gas turbine engines: monograph). Moscow, INFRA-M, 2015. 264 p.

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI