Experimental study of vaporization front of superheated n-pentane in a glass capillary


Аuthors

Lipnyagov E. V., Parshakova M. A.*

Institute of Thermal Physics of the Ural Branch of the Russian Academy of Sciences , Amundsena St., 107a Ekaterinburg, 620016, Russia

*e-mail: parmari@yandex.ru

Abstract

The paper presents experimental data on the linear vaporization front propagation velocity formed as a result of spontaneous boiling-up of superheated n-pentane in a glass capillary with an inner diameter of 5.6 mm. The upper end of the tube is sealed. The velocities are calculated from selective frames of high-speed video filming of the boiling-up process of a superheated liquid (2050 fps). Video data were obtained in experiments on measuring the lifetimes of superheated n-pentane in the temperature range from 100.3 to 125.3°C. The mean lifetime in the temperature range is of the order of 1–102 s. Superheating is realized by pressure decrease on the thermostated liquid from 2.00 to 0.10 MPa. From the entire array of video data (more than 1000), it was selected the files in which the boiling-up of superheated n-pentane occurs at one center of vaporization, and the vapor bubble, upon reaching the opposite wall forms two phase interfaces: the upper (slow-moving) and lower (vaporization front). Based on the video frames, the positions of the upper h1 and lower h2 interfaces at the time t were determined, the difference between these values Δh and the vaporization front propagation velocity Vf=dh/dt were calculated. The binding of the values of Δh, determined from the video frames, to the real values was carried out using a KM-6 cathetometer. From the data of the pressure sensor it follows that the pressure of the liquid during the growth of the vapor phase increases from 0.10 MPa to the pressure of saturated vapor at the temperature of the thermostat. It was found that the order of magnitude of Vf is 1 m/s in the temperature range from 100.3 to 122.3°C. The velocity Vf increases with the initial superheat temperature and depends on the configuration of the liquid-vapor interface. At the moment of the appearance of secondary bubbles on the surface of the primary bubble, it increases by 1.25‒1.67 times. The appearance of secondary bubbles is the more likely, the closer we are to the temperature of the attainable superheat (125.3°C). They usually appear in the liquid layer between the primary bubble and the capillary wall.

Keywords:

nucleation, superheat, boiling, vaporization front, metastable state, high-speed video, n-pentane

References

  1. Skripov V.P. Metastabil’naya zhidkost’ (Metastable Liquids). Moscow, Nauka, 1972. 312 p.
  2. Skripov V.P., Sinitsyn E.N., Pavlov P.A., Ermakov G.V., Muratov G.N., Bulanov N.V., Baidakov V.G. Teplofizicheskie svoistva zhidkostei v metastabil’nom sostoyanii (Thermophysical Properties of Liquids in the Metastable State). Moscow, Atomizdat, 1980. 208 p.
  3. Debenedetti P.G. Metastable Liquids. Princeton University Press, Princeton, New Jersey, 1996. 424 p.
  4. Ermakov G.V. Termodinamicheskie svoistva i kinetika vskipaniya peregretykh zhidkostei (Thermodynamic Properties and Boiling-Up Kinetics of Superheated Liquid). Ekaterinburg, UrO RAN, 2003. 272 p.
  5. Baidakov V.G. Explosive Boiling of Superheated Cryogenic Liquids. Weinheim, Wiley-VCH, 2007. 352 p.
  6. Mitrovic J . a nd F auser J . Propagation of boiling fronts along horizontally arranged heated tubes. Chem. Eng. Research and Design, 2001, Vol. 79, no. 4, pp. 363−370. DOI: 10.1205/026387601750282274
  7. Aktershev S.P., Ovchinnikov V.V. Model’ vskipaniya sil’no peregretoi zhidkosti s formirovaniem fronta ispareniya. Teplofizika i aeromekhanika, 2011, Vol. 18, no. 4, pp. 591‒602.
  8. Stutz B., Simões-Moreira J.R. Onset of boiling and propagating mechanisms in a highly superheated liquid — the role of evaporation waves. Int. J. Heat Mass Trans., 2013, Vol. 56, no. 1-2, pp. 683–693. DOI: 10.1016/j.ijheatmasstransfer. 2012.08.057
  9. Sharypov O.V. Hydrodynamic Instability of Vaporization Front in Superheated Liquid. J. Eng. Therm., 2019, Vol. 28, no. 4, pp. 484–488. DOI: 10.1134/s1810232819040039
  10. Zhukov V.E., Pavlenko A.N., Moiseev M.I., Kuznetsov D.V. Dinamika mezhfaznoi poverkhnosti samopodderzhivayushchegosya fronta ispareniya v zhidkosti s dobavkami nanorazmernykh chastits. Teplofizika vysokikh temperatur, 2017, Vol. 55, pp. 79–86. DOI: 10.1134/ S0018151X17010242
  11. Frost D., Sturtevant B. Vliyanie davleniya okruzhayushchei sredy na neustoichivost’ vzryvnogo vskipaniya predel’no peregretoi zhidkosti (Effects of ambient pressure on the instability of a liquid boiling explosively at the superheat limit). Journal of Heat Transfer-transactions of The Asme, 1986, no 2, pp. 158‒166,
  12. Nakoryakov V.E., Mezentsev I.V., Meleshkin A.V., Elistratov D.S. Visualization of physical processes occurring on liquid nitrogen injection into water. J. Eng. Therm., 2015, Vol. 24, no. 4, pp. 322–329. DOI: 10.1134/s1810232 815040037
  13. Li J ., W and B . Size effect on two-phase flow regime for condensation in micro/mini tubes. Inc. Heat Trans. Asian Res., 2003, Vol. 32, pp. 65–71. DOI: 10.1002/htj.10076
  14. Mehendale S.S., Jacobi A.M., Ahah R.K. Fluid flow and heat transfer at micro and meso-scales with application to heat exchanger design. Appl. Mech. Rev., 2000, Vol. 53, no. 7, pp. 175–193. DOI: 10.1115/1.3097347
  15. Kandlikar S.G., Grande W.J. Evolution of microchannel flow passages-thermohydraulic performance and fabrication technology. Heat Transfer Eng., 2003, Vol. 24, no. 1, pp. 3–17. DOI: 10.1080/01457630304040
  16. Sardeshpande M.V., Ranade V.V. Two-phase flow boiling in small channels: A brief review. Sadhana, 2013, Vol. 38, no. 6, pp. 1083–1126. DOI:10.1007/s12046-013-0192-7
  17. Reinke P. Surface boiling of superheated liquid. D.Sc. Dissertation Zurich, Swiss Federal Institute of Technology, 1997, 180 p.
  18. Reinke P., Yadigaroglu G. Explosive vaporization of superheated liquids by boiling fronts. Int. J. Multiphase Flow, 2001, Vol. 27, no. 9, pp. 1487‒1516. DOI: 10.1016/S0301-9322(01)00023-4
  19. Vitovskii O.V., Kuznetsov V.V. Issledovanie rasprostraneniya volny ispareniya metastabil’noi odnokomponentnoi zhidkosti (Investigation of the propagation of the evaporation wave of a metastable one-component liquid). Trudy IV Rossiiskoi natsional’noi konferentsii po teploobmenu (Proc. 4th Russian National Conf. Heat Trans.), Moscow, 2006, MEI, pp. 70‒72.
  20. Zhukov V.E., Kuznetsov D.V., Moiseev M.I., Bartashevich M.A. Dinamika rasprostraneniya samopodderzhivayushchegosya fronta ispareniya v usloviyakh normal’noi i mikro-gravitatsii. Sovremennaya nauka: issledovaniya, idei, rezul’taty, tekhnologii, 2013, no. 1(12), pp. 329‒335.
  21. Kuznetsov V.V., Kozulin I.A. Eksperimental’noe issledovanie dinamiki raspada metastabil’nogo sostoyaniya zhidkosti pri sbrose davleniya. Teplovye protsessy v tekhnike, 2014, Vol. 6, no. 3, P. 115‒121.
  22. Kozulin I.A., Bartkus G.V., Dimov S.V. Experimental study of metastable liquids decay during depressurization in cylindrical channel. EPJ Web of Conferences, 2017, V. 159, pp. 00025. DOI: 10.1051/epjconf/201715900025
  23. Dewangan K.K., Das P.K. Experimental analysis of flashing front propagation in superheated water ‒ Effects of degree of superheat, tube inclination, and secondary nucleation. Physics of Fluids, 2020, Vol. 32, no.7, pp. 073311. DOI: 10.1063/5.0006840
  24. Landau L.D. K teorii medlennogo goreniya. Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 1944, Vol. 14, no. 6, pp. 240–245.
  25. Esmaeeli A., Tryggvason G. Computations of Explosive Boiling in Microgravity. J. Sci. Comp., 2003, Vol. 19, no. 1, pp. 163‒182. DOI: 10.1023/A:1025347823928
  26. Yagov V.V., Labuntsov D.A. Mekhanika dvukhfaznykh sistem (The Mechanics of Two-phase Systems). Moscow, MEI, 2000. 374 p.
  27. Prosperetti A. and Plesset M.S. The stability of an evaporating liquid surface. Phys. Fluids, 1984, Vol. 27, no. 7, pp. 1590‒1602. DOI: 10.1063/1.864814
  28. Pavlov P.A. Dinamika vskipaniya sil’no peregretykh zhidkostei (Boiling dynamics of highly superheated liquids). Sverdlovsk, UrO AN SSSR, 1988. 244 p.
  29. Drazin F. Vvedenie v teoriyu gidrodinamicheskoi ustoichivosti (Introduction to Hydrodynamic Stability). Moscow, Fizmatlit, 2005. 288 p. DOI: 10.1017/CBO9780511809064
  30. Lipnyagov E.V., Parshakova M.A., Perminov S.A., Ermakov G.V. Izuchenie tsentrov paroobrazovaniya npentana v steklyannom kapillyare vblizi granitsy dostizhimogo peregreva s pomoshch’yu skorostnoi videos"emki. Teplovye protsessy v tekhnike, 2013, Vol. 5, no. 1, pp. 7–11.
  31. Lipnyagov E.V., Parshakova M.A., Perminov S.A., Ermakov G.V. The visualization of boiling-up onset of superheated n-pentane in a glass capillary at atmospheric pressure by high-speed video. Int. J. Heat and Mass Trans., 2013, V. 60, pp. 612–615. DOI: 10.1016/j.ijheatmasstransfer. 2013.01.022
  32. Lipnyagov E.V., Perminov S.A., Parshakova M.A., Zakharov M.S. Vizualizatsiya vskipaniya sil’no peregretogo npentana v steklyannom kapillyare pri davleniyakh vyshe atmosfernogo. Teplovye protsessy v tekhnike, 2015, Vol. 7, no. 5, pp. 199‒203.
  33. Lipnyagov E.V., Parshakova M.A., and Perminov S.A. The study of boiling-up onset of highly superheated n-pentane in a glass capillary at different pressures. I. Visualization by high-speed video and nucleation sites. Int. J. Heat and Mass Trans., 2017, Vol. 104, pp. 1353‒1361. DOI: 10.1016/j.ijheatmasstransfer.2016.06.020
  34. Bassi P., Loria A., Meyer J. A., Mittner P., and Scotoni I. On n-Pentane Bubble Chambers. Nuovo Cim., 1956, Vol. 4, no. 2, pp. 491–500. DOI: 10.1007/BF02745463
  35. Lipnyagov E.V., Perminov S.A., Ermakov G.V., Smolyak B.M. Eksperimental’naya proverka gomogennosti vskipaniya zhidkostei vblizi granitsy dostizhimogo peregreva. Teplofizika i aeromekhanika, 2009, Vol. 16, no. 3, pp. 445–457. DOI: 10.1134/S0869864309030135
  36. Sheipak A.A. Gidravlika i gidropnevmoprivod: Uchebnoe posobie. Ch.1. Osnovy mekhaniki zhidkosti i gaza (Hydraulics and hydraulic pneumatic drive: Textbook. Part 1. Fundamentals of fluid and gas mechanics), 2nd ed. Moscow, MGIU, 2003. 192 p.
  37. Parshakova M.A., Lipnyagov E.V., Perminov S.A. Metodika eksperimenta po izucheniyu kinetiki spontannogo vskipaniya peregretoi zhidkosti s ispol’zovaniem pravostoronnego tsenzurirovaniya. Teplovye protsessy v tekhnike, 2016, Vol. 8, no. 8, pp. 361‒367.
  38. Lipnyagov E.V., Parshakova M.A., and Perminov S.A. The study of boiling-up onset of highly superheated n-pentane in a glass capillary at different pressures. II. Data processing. Int. J. Heat and Mass Trans., 2017, Vol. 104, pp. 1362–1371. DOI: 10.1016/j.ijheatmasstransfer.2016.08.098
  39. Lipnyagov E.V., Parshakova M.A., Perminov S.A. Skorostnaya videos«emka spontannogo paroobrazovaniya sil’no peregretogo n-pentana v yacheike s metallicheskoi provolokoi. Teplovye protsessy v tekhnike, 2017, Vol. 9, no. 7, pp. 297‒304.
  40. Glaser D.A. Bubble chamber tracks of penetrating cosmic ray particles. Phys. Rev., 1953, Vol. 91, no. 3, pp. 762‒763. DOI: 10.1103/PhysRev.91.762
  41. Bormashenko E. Wetting of real surfaces. Berlin, De Gruyter, 2013. 188 p.
  42. Saffman P.G., Taylor G. The penetration of a fluid into a porous medium or a Hele—Shaw cell containing a more viscous fluid. Proc. Roy. Soc. London. A. 1958, Vol. 245, no. 1242, pp. 312–329. DOI: 10.1098/rspa.1958.0085
  43. Ershov A.P., Dammer A.Ya., Kupershtokh A.L. Neustoichivost’ «nevyazkogo pal’tsa» v regulyarnykh modelyakh poristoi sredy. Prikladnaya mekhanika i tekhnicheskaya fizika, 2001, Vol. 42, no. 2, pp. 300–309. DOI: 10.1023/ A:1018888205638
  44. Rusanov A.I., Esipova N.E., Sobolev V.D. Sil’naya zavisimost’ kraevogo ugla ot davleniya. Doklady Akademii Nauk, 2019, Vol. 487, pp. 87–90. DOI: 10.1134/S00125 01619070017
  45. Esipova N.E., Rusanov A.I., Sobolev V.D., Itskov S.V. Vliyanie gidrostaticheskogo davleniya na kraevoi ugol sidyashchego puzyr’ka. Kolloidnyi zhurnal, 2019, Vol. 81, pp. 507–514. DOI: 10.1134/S1061933X1905003X

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI