Kerosene combustion models analysis by the example of liquid rocket engine


Аuthors

Senchev M. N.*, Zubrilin I. A.**, Yurtaev A. A.***, Komisar Y. V.****

Samara National Research University named after Academician S.P. Korolev, Samara, Russia

*e-mail: senchevmn@mail.ru
**e-mail: zubrilin416@mail.ru
***e-mail: don.yurtaev2016@yadnex.ru
****e-mail: komisar.yuv@ssau.ru

Abstract

The article presents the results of the combustion processes simulation in the liquidpropellant rocket engine (LRE) chamber while applying various kinetic mechanisms of chemical reactions. The authors considered various models of fuels similar by properties to the T-1 kerosene employed with the LRE under study according to the State Standard 10227-86. Simulation was being performed in the two dimensional statement with the «ANSYS Fluent» software. The z77 reduced mechanism (components, reactions) and A3skeletal mechanism (components, reactions) were employed for chemical reactions description. Simulation results in the two dimensional statement were being compared with the thermodynamic calculations, as well as bench tests on thrust. Computational data divergence between each other and with experimental ones by the basic characteristics does not exceed 3% when employing the z77 mechanism. Thus, the article demonstrates that the problem statement presented in this work may be employed for the T1 kerosene, and oxygen combustion processes simulation.

Keywords:

liquid rocket engine (LRE), combustion, kerosene, oxygen, combustion products, combustion processes

References

  1. Trofimov V.F. Osushchestvlenie mechty (Dreams come true), Moscow, Mashinostroenie (Mashinostroenie — Polet), 2001, 184 p.
  2. Dobrovol’skii M.V. Zhidkostnye raketnye dvigateli (Liquid rocket engines), Moscow, Mashinostroenie, 1968, 396 p.
  3. Kudryavtsev V.M. (ed) Osnovy teorii i rascheta zhidkostnykh raketnykh dvigatelei. Uchebnik dlya vuzov (Fundamentals of the theory and calculation of liquid-propellant rocket engines. Textbook for universities), Moscow, «Vysshaya shkola», 1975, 656 p.
  4. Ranzi E., Frassoldati A., Stagni A., Pelucchi M., Cuoci A., Faravelli T. Reduced Kinetic Schemes of Complex Reaction Systems: Fossil and Biomass-Derived Transportation Fuels, International Journal of Chemical Kinetics 2014, no. 46(9), pp. 512–542. DOI:10.1002/kin.20867
  5. Rukovodstvo po ekspluatatsii RE 301-02-207-2000. Goryuchee T-1 (T-1 PP) (Manual RE 301-02-207-2000. Fuel T-1 (T-1 PP)), 2000.
  6. Hong-hua Cai, W. Nie, Xin-lei Yang, Ruifan Wu, Ling-yu Su Three-Dimensional Numerical Analysis of LOX/Kerosene Engine Exhaust Plume Flow Field Characteristics, Hindawi International Journal of Aerospace Engineering, 2017, Vol. 2017, 13 p., ID 4768376. https://doi.org/10.1155/2017/4768376
  7. Topliva dlya reaktivnykh dvigatelei. Tekhnicheskie usloviya, GOST 10227-2013 (Jet fuels. Specifications, State Standard 10227‒2013), Moscow, Standartinform, 2014, 13 p.
  8. Dubovkin N.F., Malanicheva V.G., Massur Yu.P., Fedorov E.P. Fiziko-khimicheskie i ekspluatatsionnye svoistva reaktivnykh topliv. Spravochnik (Physicochemical and operational properties of jet fuels. Handbook.) Moscow, Khimiya, 1985, 240 p.
  9. Edwards T. Reference Jet Fuels for Combustion Testing. 55th AIAA Aerospace Sciences Meeting, Grapevine, Texas, USA, 2017, pp. 12772‒12829. DOI:10.2514/6.2017-0146
  10. Xu R., Wang H., Colket M., Edwards T. Thermochemical properties of jet fuels. Interm Report, Stanford University, USA, 2015, 23 p.
  11. Franzelli B., Riber E., Sanjosé M., Poinsot T. A two-step chemical scheme for kerosene—air premixed flames, Combust Flame, 2010, Vol. 157(7), pp. 1364–1373.
  12. Zettervall N., Fedina E., Nordin-Bates K., Heimdal Nilsson E., Fureby C. Combustion LES of a Multi-Burner Annular Aeroengine Combustor using a Skeletal Reaction Mechanism for Jet-A Air Mixtures, In 51st AIAA/SAE/ASEE Joint Propulsion Conference AIAA-4020, Orlando, Florida, USA, 2015, pp. 3634‒3652.
  13. Zettervall N., Fureby C., Nilsson E.J.K. A reduced chemical kinetic reaction mechanism for kerosene-air combustion, Fuel, 2020, Vol. 269, no. 4, pp. 117446.
  14. Xu R., Wang K., Banerjee S., Shao J., Parise T., Zhu Y., Wang S., Movaghar A., Lee D.J., Zhao R., Han X., Gao Y., Lu T., Brezinsky K., Egolfopoulos F.N., Davidson D.F., Hanson R.K., Bowman C.T., Wang H. A physics-based approach to modeling real-fuel combustion chemistry. II. Reaction kinetic models of jet and rocket fuels, Combustion and Flame, 2018, no. 193, pp. 520‒537.
  15. Wang H., Xu R., Wang K., Bowman C.T., Davidson D.F., Hanson R.K., Brezinsky K., Egolfopoulos F.N. A physics-based approach to modeling real-fuel combustion chemistry. I. Evidence from experiments, and thermodynamic, chemical kinetic and statistical considerations, Combustion and Flame, 2018, no. 193, pp. 502‒519.
  16. ANSYS FLUENT 15.0 Theory Guide, Canonsburg, PA, ANSYS, Inc., no. 15, 2013, 1146 p.
  17. Vorob’ev A.G., Borovik I.N., Kha S. Analiz statsionarnogo teplovogo sostoyaniya ZhRD maloi tyagi s toplivom vysokokontsentrirovannaya perekis’ vodoroda−kerosin s uchttom vpryskivaniya, ispareniya i sgoraniya zhidkostnykh kapel’ topliv, Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta, 2014, no. 1(43), pp. 41‒55.
  18. Mosolov S.V., Sidlerov D.A., Ponomarev A.A., Smirnov Yu.L. Raschetnoe issledovanie osobennostei rabochego protsessa v kamerakh sgoraniya ZhRD, rabotayushchikh na toplive kislorod +uglevodorody, Trudy MAI, 2012, no. 58, pp. 15‒15.
  19. Kiselev A.S. Modelirovanie statsionarnogo goreniya v kamere sgoraniya ZhRD, Trudy NPO Energomash imeni akademika V.P. Glushko, 2012, no. 29, pp. 15‒27.

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI