Studying thermo-physical properties of polymer carbon composite materials


Аuthors

Popov I. A.*, Konstantinov D. Y., Kuzin A. A., Russkikh M. D.

Kazan National Research Technical University named after A.N. Tupolev, Kazan, Russia

*e-mail: popov-igor-alex@yandex.ru

Abstract

The authors conducted the study on thermal conductivity coefficients and specific heat capacity of the four samples of polymer composite materials (PCM). The article sets the levels of the thermal conductivity coefficients and heat capacity and their dependence on temperature within the range from —20°C to 80°C. The values of thermal conductivity coefficients were from 0.26 to 0.54 W/(m∙K) for PEEK (Russia), TENAX-E TPCL PEEK-4-40-HTA40 E13 3K DT-5HS-285/04AB (Japan) thermoplastics, as well as for UMT-49/T-26 thermosetting plastic (Russia). This value was 0.14–0.165 for the Aranit RUSAR S600/T-26 (Russia) fibered thermosetting plastic. The obtained results may be applied to design and development of the systems employing the PCM as a structural material, as well as for technological parameters computing of these PCM production process. A database on the thermal conductivity coefficients and specific heat capacity may be formed based on the obtained results. These results will also allow conducting verification of the numerical models of thermal conductivity of the studied PCM with account for their structure.

Keywords:

heat-conductivity coefficient, specific heat capacity coefficient, polymer composite materials, carbon fiber, stationary heat flux meter

References

  1. Nikolaeva E.A., Timofeev A.N., Mikhailovskii K.V. Vysokoteploprovodnyi ugleplastik na osnove uglerodnogo volokna iz peka i dispersno-napolnennoi matritsy ENFB, Informatsionno-tekhnologicheskii vestnik, 2018, no. 2 (16), pp. 130‒137.
  2. Silva C., Marotta E., Schuller M., Peel L., O’Neil M.J. In-plane thermal conductivity in thin carbon fiber composites, J. of Thermophysics and Heat Transfer, 2007, Vol. 3 (21), pp. 460‒467. DOI: 10.2514/1.27859
  3. Arai Yu. Pitch-based carbon fiber with low modulus and high heat conduction, Nippon Steel Techn. Rept., 2001, no. 84, pp. 22‒28.
  4. Kablov E.N., Gunyaev G.M., Il’chenko S.I., Krivonos V.V., Rumyantsev A.F., Kavun T.N., Komarova O.A., Ponomarev A.N., Deev I.S., Aleksashin V.M. Konstruktsionnye ugleplastiki s povyshennoi provodimost’yu, Aviatsionnye materialy i tekhnologii, 2004, no. 2, pp. 26‒36.
  5. Mikhailovskii K.V., Prosuntsov P.V., Reznik S.V. Razrabotka vysokoteploprovodnykh polimernykh kompozitsionnykh materialov dlya kosmicheskikh konstruktsii, Vestnik MGTU im. N.E. Baumana. Ser. «Mashinostroenie», 2012, no. 9, pp. 98‒106.
  6. Barbot’ko S.L., Vol’nyi O.S., Marakhovskii P.S. Issledovanie vliyaniya skhemy armirovaniya na kharakteristiki goryuchesti ugleplastika, Trudy VIAM, 2019, no. 10 (82), pp.103‒110. DOI: 10.18577/2307-6046-2019-0-10-103-110
  7. Mondal S., Khastgir D.Thermal Conductivity of Polymer-Carbon Composites,in Rahaman M., Khastgir D., Aldalbahi A.K. (ed),Carbon-Containing Polymer Composites, Springer, Singapore, 2019, pp. 369‒396, (574 p.). DOI: 10.1007/ 978-981-13-2688-2_11
  8. Ohlhorst C.W., Vaughn W.L., Ransone Ph.O., Tsou H.-T. Thermal Conductivity Database of Various Structural Carbon-Carbon Composite Materials, NASA Technical Memorandum 4787, Hampton, Virginia, Langley Research Center, 1997, 96 p.
  9. Kablov E.N. Innovatsionnye razrabotki FGUP «VIAM» GNTs RF po realizatsii «Strategicheskikh napravlenii razvitiya materialov i tekhnologii ikh pererabotki na period do 2030 goda», Aviatsionnye materialy i tekhnologii, 2015, no. 1 (34), pp. 3‒33. DOI: 10.18577/2071-9140-2015-0-1-3-33
  10. Kablov E.N. Kompozity: segodnya i zavtra, Metally Evrazii, 2015, no. 1, pp. 36‒39.
  11. Borshchev A.V., Gusev Yu.A. Polimernye kompozitsionnye materialy v avtomobil’noi promyshlennosti, Aviatsionnye materialy i tekhnologii, 2014, no. 52, pp. 34‒38.
  12. Raskutin A.E. Rossiiskie polimernye kompozitsionnye materialy novogo pokoleniya, ikh osvoenie i vnedrenie v perspektivnykh razrabatyvaemykh konstruktsiyakh, Aviatsionnye materialy i tekhnologii, 2017, no. 5, pp. 349‒367. DOI: 10.18577/2071-9140-2017-0-S-344-348
  13. Kablov E.N., Startsev V.O., Inozemtsev A.A. Vlagonasyshchenie konstruktivno-podobnykh elementov iz polimernykh kompozitsionnykh materialov v otkrytykh klimaticheskikh usloviyakh s nalozheniem termotsiklov, Aviatsionnye materialy i tekhnologii, 2017, no. 2, pp. 56–68. In Russia. DOI: 10.18577/2071-9140-2017-0-2-56-68
  14. Donetskii K.I., Karavaev R.Yu., Raskutin A.E., Dun V.A. Ugleplastik na osnove ob’emno-armiruyushchei triaksial’noi pletenoi preformy, Trudy VIAM, 2019, no. 1 (73), pp. 55‒63. DOI: 10.18577/2307-6046-2019-0-1-55-63
  15. Donetskii K.I., Khrul’kov A.V., Kogan D.I., Belinis P.G., Luk’yanenko Yu.V. Primenenie ob’emno-armiruyushchikh preform pri izgotovlenii izdelii iz PKM, Aviatsionnye materialy i tekhnologii, 2013, no. 1, pp. 35‒39.
  16. Konstantinov D.Yu., Petrushenko R.Yu., Bezzametnova D.M., Yashin I.I. Vliyanie sposoba izgotovleniya preform na mekhanicheskie kharakteristiki ugleplastika, Izv. vuzov. Aviatsionnaya tekhnika,2021, no. 1 (64), pp. 110‒114. DOI: 10.3103/S1068799821010153
  17. Gunyaeva A.G., Sidorina A.I., Kurnosov A.O., Klimenko O.N. Polimernye kompozitsionnye materialy novogo pokoleniya na osnove svyazuyushchego vse-1212 i napolni-telei, al’ternativnykh napolnitelyam firm Porcher Ind. i Toho Tenax, Aviatsionnye materialy i tekhnologii, 2018, no. 3 (52), pp. 18‒26. DOI: 10.18577/2071-9140-2018-0-3-18-26

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI