Applying topological optimization methods for radio-electronic equipment thermal state ensuring


Аuthors

Lopatin A. A.1*, Aleksandrov Y. B.1**, Somov I. G.2, Biktagirova A. R.1***

1. Kazan National Research Technical University named after A.N. Tupolev, Kazan, Russia
2. Engineer JSC “Modeling and digital twins”, ul. Victorenko, 5, Moscow, 125167, Russia

*e-mail: aalopatin@kai.ru
**e-mail: Alexwischen@rambler.ru
***e-mail: ARBiktagirova@kai.ru

Abstract

The article considers the issue of determining the heat sink optimal shape based on the split-type finning, as a typical element of the cooling system for heat-loaded elements of radio-electronic and electric power equipment. The authors proposed the solution of the topological optimization problem by the criterion of maximum heat transfer through the heat sink with Ansys Mechanical, as well as the new structure and geometrical shape of the finning with improved characteristics, built on the basis of the topological optimization results obtained with Ansys. Characteristics of the original and optimized designs are compared.

Keywords:

heat flow, topological optimization, heat exchange processes modeling, tree-like structures

References

  1. Nikolayeva D.V., Lopatin A.A. Chislennoye modelirovaniye protsessov teplootdachi v sistemakh s razreznym orebreniyem. Vserossiyskaya nauchno-prakticheskaya konferentsiya s mezhdunarodnym uchastiyem “Novye tekhnologii, materialy i oborudovaniye rossiyskoy aviakosmicheskoy otrasli”, sbornik statey. [Numerical modeling of heat transfer processes in systems with split fins in the collection of articles: new technologies, materials and equipment of the russian aerospace industry (Kazan’, 8–10 avgusta 2018)]. Kazan’, 2018, pp. 393–396. (In Russ.)

  2. Lopatin A.A., Nikolaeva D.V. Influence of some geometrical parameters of split ribs on the heat transfer under free convection. Russian Aeronautics, 2019, vol. 62, no. 2, pp. 254–258.

  3. Lei T., Alexandersen J., Lazarov B.S., Wang F., Haertel J. H. K., Sigmund O., Engelbrecht K. Investment casting and experimental test of heat sinks designed by topology optimization. Under review in International Journal of Heat and Mass Transfer, 2018, vol. 127, part B. URL: https://doi.org/10.1016/j.ijheatmasstransfer.2018.07.060.

  4. Haertel J.H.K., Nellis G.F. A Fully Developed Flow Thermofluid Model for Topology Optimization of 3D-Printed Air Cooled Heat Exchangers. Applied Thermal Engineering, 2017, vol. 119, pp. 10–24.

  5. Ge R., Humbert G., Martinez R., Attallah М., Sciacovelli А. Additive manufacturing of a topology-optimised multi-tube energy storage device: Experimental tests and numerical analysis. Applied Thermal Engineering, 2020, 115878. DOI:10.1016/j.applthermaleng.2020.115878

  6. Iradukunda А.-С., Vargas А., Huitink D., Lohan D. Transient thermal performance using phase change material integrated topology optimized heat sinks. Applied Thermal Engineering, 2020, vol. 179, 115723.

  7. Lange1 F., Hein1 C., Li1 G., Emmelmann C. Numerical optimization of active heat sinks considering restrictions of selective laser melting. Conference: COMSOL Conference in Lausanne, 2018.

  8. Wu S., Zhang Y., Liu S. Topology optimization for minimizing the maximum temperature of transient heat conduction structure, 2019. DOI: 10.1007/s00158-019-02196-9.

  9. Bendsoe M.P., Sigmund O. Topology Optimization: Theory. Methods and Applications. Springer Berlin, Heidelberg, 2004, 271 p. DOI: 10.1007/978-3-662-05086-6.

  10. Статья поступила в редакцию 14.11.2022; одобрена после рецензирования 27.02.2023; принята к публикации 09.03.2023.

  11. The article was submitted on 14.11.2022; approved after reviewing on 27.02.2023; accepted for publication on 09.03.2023.

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI