Some aspects in cooling of high-temperature surfaces using subcooled water jet impingement were investigated. Explanation proposed for visually observed contact between water and heater surface at temperatures above thermodynamics superheat limit temperature and for the fact that experimentally observed heat fluxes can not be removed from the surface at usual film boiling regime. A hypothesis is formulated that the increase in heat transfer occurs due to the vortex generation on large sur- face asperities penetrating into the liquid through ultra-thin vapor film (5-10 mkm) formed on the surface.
Agarwal C. Surface Quenching by Jet Impingement – A Review. Steel research international, 2018, vol. 90, iss. 1, p. 1800285. DOI: 10.1002/srin.201800285
Wolf D.H, Incropera F., Viskanta R. Jet Impingement Boiling. Advances in heat transfer, 1993, vol. 23, pp. 1–132. DOI:10.1016/S0065-2717(08)70005-4.
Leocadio H., Van Der Geld C.W.M., Passos J.C. Rewetting and boiling in jet impingement on high temperature steel surface. Physics of Fluids, 2018, vol. 30, iss. 12, p. 122102. DOI: 10.1063/1.5054870
Karwa N., Stephan P. Experimental investigation of free-surface jet impingement quenching process. International Journal of Heat and Mass Transfer, 2013, vol. 64, pp. 1118–1126. DOI: 10.1016/j.ijheatmasstransfer.2013.05.014
Gomez C., Van der Geld C.W.M., Kuerten J., Liew R., Bsibsi M., Van Esch B. The nature of boiling during rewetting of surfaces at temperatures exceeding the thermodynamic limit for water superheat. Journal of Fluid Mechanics, 2020, vol. 895, p. A3. DOI:10.1017/jfm.2020.232
Liu Z.H., Wang J. Study on film boiling heat transfer for water jet impinging on high temperature flat plate. International Journal of Heat and Mass Transfer, 2001, vol. 44, iss. 13, pp. 2475–2481. DOI:10.1016/S0017-9310(00)00281-7
Zhukauskas A., Ulinskas R. Teplootdacha poperechno obtekaemyh puchkov trub [Heat transfer in banks of tubes in crossflow]. Vil’njus: Mokslas, 1986, 192 p. (In Russ.).
Albarède P., Monkewitz P.A. A model for the formation of oblique shedding and “chevron” patterns in cylinder wakes. Physics of Fluids A: Fluid Dynamics, 1992, vol. 4, iss. 4, pp. 744–756. DOI:10.1063/1.858292
Yu G., Avital E.J., Williams J.J.R. Large eddy simulation of flow past free surface piercing circular cylinders. Journal of Fluids Engineering, 2008, vol. 130, iss. 10, p. 101304 DOI: 10.1115/1.2969462
Ageorges V., Peixinho J., Perret G. Flow and air-entrainment around partially submerged vertical cylinders. Physical Review Fluids, 2019, vol. 4, iss. 6, p. 064801. DOI: 10.1103/PhysRevFluids.4.064801
Benitz M.A., Carlson D.W., Seyed-Aghazadeh B., Modarres-Sadeghi Y., Lackner M.A., Schmidt D.P. CFD simulations and experimental measurements of flow past free-surface piercing, finite length cylinders with varying aspect ratios. Computers & Fluids, 2016, vol. 136, pp. 247-259. DOI: 10.1016/j.compfluid.2016.06.013
Rosetti G.F., Vaz G., Hoekstra M., Gonçalves R.T., Fujarra A.L.C. CFD calculations for free-surface-piercing low aspect ratio circular cylinder with solution verification and comparison with experiments. International Conference on Offshore Mechanics and Arctic Engineering – American Society of Mechanical Engineers (June 9–14, 2013, Nantes, France). Nantes, 2013, p. 10963. DOI: 10.1115/OMAE2013-10963
Gonçalves R.T., Franzini G.R., Rosetti G.F., Meneghini J.R., Fujarra A.L.C. Flow around circular cylinders with very low aspect ratio. Journal of Fluids and Structures, 2015, vol. 54, pp. 122–141. DOI: 10.1016/j.jfluidstructs.2014.11.003
Kljachko L.S. Uravnenie dvizhenija pylevyh chastic v pylepriemnyh ustrojstvah [Equation of motion of dust particles in dust receiving devices]. Otoplenie i ventiljacija, 1934, no. 4, pp. 27–32. (In Russ.).
Roshko A. On the development of turbulent wakes from vortex streets. 1954. NACA Technical Note No. 1191. URL: https://ntrs.nasa.gov/api/citations/19930092207/downloads/19930092207.pdf
mai.ru — informational site of MAI Copyright © 2009-2024 by MAI |