Обобщение и анализ результатов последних исследований в области улучшения характеристик теплообмена и гидродинамики при поперечном обтекании гладких труб


DOI: 10.34759/tpt-2021-13-2-50-69

Авторы

Дееб Р.

Университет Дамаска, Сирия, Дамаск

e-mail: e.rawad.deeb@yandex.com, DeebR@mpei.ru

Аннотация

Проводится обзор последних разработок, направленных на повышение термогидродинамической эффективности теплообменных аппаратов. Обсуждается влияние изменения поперечного сечения трубы, угла атаки, использования ребер и вихревых генераторов на теплоотдачу и перепад давления в теплообменниках. Представлены различные параметры для оценки термогидродинамических характеристик теплообменника. Показаны эмпирические и теоретические зависимости для расчета теплообмена и гидродинамики при поперечном обтекания труб из наиболее значимых литературных источников. По результатам этого обзора определены этапы исследований в этой области.

Ключевые слова:

каплевидная труба, плоская труба, эллиптическая труба, линзовидная труба, трапециевидная труба, круглая труба, теплообмен, коэффициент сопротивления трения, угол атаки, крылышко, ребро, генератор вихрей

Библиографический список

  1. Paul S.S., Ormiston S.J., Tachie M.F. Experimental and numerical investigation of turbulent cross-flow in a staggered tube bundle // Int. J. Heat Fluid Flow. 2008. V. 29. P. 387–414.

  2. Ahmed H.E et. Turbulent heat transfer and nanofluid flow in a triangular duct with vortex generators // Int. J. Heat Mass Transf. 2017. V. 105. P. 495–504

  3. Shah R.K., Sekulic D.P. Fundamentals of heat exchanger design. New Jersey: JOHN WILEY & SONS, INC; 2003.

  4. Standards of Tubular Exchanger Manufacturers Association. Fifth. 1968. New York.

  5. Standards of Tubular Exchanger Manufactures Association. Eighth. 1998. New York.

  6. Wu F., Zhang J., Ma X., Zhou W. Numerical simulation of gas-solid flow in a novel spouted bed: Influence of row number of longitudinal vortex generators. Adv Powder Technol. 2018. V. 29. P.1848—58.

  7. Chamoli S., Lu R., Xu D., Yu P. Thermal performance improvement of a solar air heater fitted with winglet vortex generators // Sol Energy. 2018. V. 159. P. 966–983.

  8. Liang G., Islam M.D., Kharoua N., Simmons R. Numerical study of heat transfer and flow behavior in a circular tube fitted with varying arrays of winglet vortex generators // Int. J. Therm Sci. 2018. V. 134. P. 54–65.

  9. Promvonge P., Chompookham T., Kwankaomeng S., Thianpong C. Enhanced heat transfer in a triangular ribbed channel with longitudinal vortex generators // Energy Convers Manag. 2010. V. 51. P. 1242–1249.

  10. Samadifar M., Toghraie D. Numerical simulation of heat transfer enhancement in a platefin heat exchanger using a new type of vortex generators // Appl. Therm. Eng. 2018. V. 133. P. 671–681.

  11. Liu S., Sakr M. A comprehensive review on passive heat transfer enhancements in pipe exchangers // Renew Sustain Energy Rev. 2013. V. 19. P. 64–81.

  12. Alam T., Saini R.P., Saini J.S. Heat and flow characteristics of air heater ducts provided with turbulators — A review // Renew Sustain Energy Rev. 2014. V. 31. P. 289–304.

  13. Tahseen T.A., Ishak M., Rahman M.M. An overview on thermal and fluid flow characteristics in a plain plate finned and unfinned tube banks heat exchanger // Renew Sustain Energy Rev. 2015. V. 43. P. 363–380.

  14. Deshmukh P.W., Prabhu S.V., Vedula R.P. Heat transfer enhancement for laminar flow in tubes using curved delta wing vortex generator inserts // Appl. Therm. Eng. 2016. V. 106. P. 1415–1426.

  15. Liang G., Islam M.D., Kharoua N., Simmons R. Numerical study of heat transfer and flow behavior in a circular tube fitted with varying arrays of winglet vortex generators // Int. J. Therm. Sci. 2018. V. 134. P. 54–65.

  16. Кейс В.М., Лондон А.Л. Компактные теплообменники. М.: Энергия, 1967. 224 с.

  17. Buyruk E. Numerical study of heat transfer characteristics on tandem cylinders, inline and staggered tube banks in cross-flow of air // International Communications in Heat and Mass Transfer. 2002. V. 29. P. 355–366.

  18. Lee D., Ahn J., Shin S. Uneven longitudinal pitch effect on tube bank heat transfer in cross flow// Appl. Therm. Eng. 2013. V. 51. P. 937–947.

  19. Петухов Б.С. Теплообмен и сопротивление при ламинарном течении жидкости в трубах. М.: Энергия, 1967. 409 с.

  20. Петухов Б.С. Расчет теплообмена и гидравлического сопротивления при ламинарном течении жидкости переменной вязкости в круглой трубе // Теплоэнергетика. 1954. № 9.

  21. Roshko A. On the wake and drag of bluff bodies on the wake and drag of bluff bodies // J. Aeronaut. Sci. 1955. V. 22. P. 124–132.

  22. Gerrard J.H. The mechanics of the formation region of vortices behind bluff bodies // J Fluid Mech. 1966. V. 25. P. 401–413.

  23. Roshko A. Experiments on the flow past a circular cylinder at very high Reynolds number // J. Fluid. Mech. 1961. V. 10. P. 345–356.

  24. Li X., Zhu D., Yin Y., Liu S., Mo X. Experimental study on heat transfer and pressure drop of twisted oval tube bundle in cross flow // Exp. Therm. Fluid. Sci. 2018. V. 99. P. 251–258.

  25. Zehua H., Sun D. Predicting local surface heat transfer coefficients by different turbulent k-ε models to simulate heat and simulate heat and moisture transfer during air-blast chilling // Int. J. Refrig. 2000. V. 24. Iss. 7. P. 702–717.

  26. Yakhot V. et al. Renormalization Group Modeling and Turbulence Simulations. Near-Wall Turbulent Flows, Tempe, AZ, 1993.

  27. Soe T.M., Khaing S.Y. Comparison of turbulence models for computational fluid dynamics simulation of wind flow on cluster of buildings in mandalay // International Journal of Scientific and Research Publications. 2017. V. 7. Iss. 8. P. 2250–3153.

  28. ANSYS, Inc. ANSYS Fluent Reference Guide16.0. 2015.

  29. Merker G. P., Hanke H. Heat transfer and pressure drop on the shell-side of tube-banks having oval-shaped tubes // Int. J. Heat Mass Transf. 1986. V. 29. P. 1903–1909.

  30. Ota T., Hideya N., Yukiyasu T. Heat transfer and flow around an elliptic cylinder // International Journal of Heat and Mass Transfer. 1984. V. 27. P. 1771–1779.

  31. Кондратюк В.А., Семеняко А.В., Терех А.М., Руденко А.И., Жукова Ю.В. Теплообмен и аэродинамика одиночных труб плоскоовального профиля // Современная наука: исследования, идеи, результаты, технологии. 2013. № 1(12). С. 3–6.

  32. Toolthaisong S., Kasayapanand N. Effect of attack angles on air side thermal and pressure drop of the cross flow heat exchangers with staggered tube arrangement // Energy Procedia. 2013. V. 34. P. 417–429.

  33. Zeeshan M., Nath S., Bhanja D. Numerical study to predict optimal configuration of fin and tube compact heat exchanger with various tube shapes and spatial arrangements // Energy Convers Manag. 2017. V. 148. P. 737–752.

  34. Park J.M., Kim O.J., Kim S.J., Shin Y.C. Heat transfer characteristics of circular and elliptic cylinders in cross flow // Adv. Mech. Eng. 2015. V. 7. P. 1–8.

  35. Horvat A., Leskovar M., Mavko B. Comparison of heat transfer conditions in tube bundle cross-flow for different tube shapes // Int. J. Heat Mass Transf. 2006. V. 49. P. 1027–1038.

  36. Антуфьев В.М., Белецкий Г.С. Теплоотдача и аэродинамические сопротивления рубчатых поверхностей в поперечном потоке. М.-Л.: Машгиз, 1948. 119 с.

  37. Антуфьев В.М. Эффективность различных форм конвективных поверхностей нагрева. М.-Л.: Энергия, 1966. 184 с.

  38. Кэйс В.М., Лондон А.Л. Компактные теплообменники. М.: Госэнергоиздат, 1962. 160 c.

  39. Brauer H. Mitt. Verein Grosskesselbesitzer. 1961. N 73. Р. 260‒276.

  40. Ibrahim T.A., Gomaa A. Thermal performance criteria of elliptic tube bundle in crossflow // International Journal of Thermal Sciences. 2009. V. 48. P. 2148–2158.

  41. Brauer H. Compact heat exchangers // J. Chem. Process Eng. 1964. P. 451–460.

  42. Nishiyama H., Ota T., Matsuno T. Heat transfer and flow around elliptic cylinders in tandem arrangement // JASME Int. J. Ser II. 1988. V. 31. P. 410–419.

  43. Harris D.K., Goldschmidt V.W. Measurement of the overall heat transfer for combustion gases confined within elliptical tube heat exchangers // Exp. Therm. Fluid. Sci. 2002. V. 26. P. 33–37.

  44. Berbish N.S. Heat transfer and flow behavior around four staggered elliptic cylinders in cross flow // Heat Mass Transf und Stoffuebertragung. 2011. V. 47. P. 287–300.

  45. Alawadhi E.M. Laminar forced convection flow past an inline elliptical cylinder array with inclination // J. Heat Transf. 2010. V. 132. N 7. Р. 071701.

  46. Ota T., Hideya N., Yukiyasu T. Heat transfer and flow around an elliptic cylinder // International Journal of Heat and Mass Transfer. 1984. V. 27. N 10. Р. 1771–1779.

  47. Li Z., Davidson J.H., Mantell S.C. Numerical simulation of flow field and heat transfer of streamlined cylinders in cross flow // J. Heat Transf. 2006. V. 128. N 6. Р. 564–570.

  48. Ruth E.K. Experiments on a cross flow heat exchanger with tubes of lenticular shape // ASME. J. Heat Transfer. 1983. V. 105. P. 571–575.

  49. Grimison D. Correlation and utilization of new data on flow resistance and heat transfer for cross-flow of gases over tube banks // Trans. ASME. 1937. V. 59. P. 583‒594.

  50. Kong Y.Q., Yang L.J., Du X.Z., Yang Y.P. Air-side flow and heat transfercharacteristics of flat and slotted finned tube bundles with various tube pitches // Int. J. Heat Mass. Transf. 2016. V. 90. P. 357–371.

  51. Lam K., Lin Y.F., Zou L., Liu Y. Experimental study and large eddy simulation of turbulent flow around tube bundles composed of wavy and circular cylinders // Int. J. Heat Fluid. Flow. 2010. V. 31. P. 32–44.

  52. Sun L., Zhang C.L. Evaluation of elliptical finned tube heat exchanger performance using CFD and response surface methodology // Int. Thermal Sci. 2014. V. 75. P. 45–43.

  53. Мигай В.К. Моделирование теплообменного энергетического оборудования. Л.: Энергоатомиздат, 1987. 260 с.

  54. Мигай В.К. Повышение эффективности современных теплообменников. Л.: Энергия, 1980. 144 с.

  55. Saffarian M.R., Fazelpour F., Sham M. Numerical study of shell and tube heat exchanger with different cross section tubes and combined tubes // Int. J. of Energy and Environmental Engineering. 2019. V. 46. P. 33–46.

  56. Dhiman A., Ghosh R. Computer simulation of momentum and heat transfer across an expanded trapezoidal bluff body // Int. J. of Heat and Mass Transfer. 2013. V. 59. P. 338–352.

  57. Chatterjee D., Mondal B. Unsteady mixed convection heat transfer from tandem square cylinders in cross flow at low Reynolds numbers // Heat Mass Transf. 2013. V. 49. P. 907–920

  58. Gupta A. Suppression of vortex shedding in flow around square cylinder using control cylinder // European Journal of Mechanics — B/Fluids. 2019. V. 76. P. 276–291.

  59. Guanmin Z. et al. Flow and heat transfer characteristics around egg-shaped tube // Int. J. Heat Mass Transf. 2015. V. 27. P. 76–84.

  60. Lavasani A.M., Bayat H. Numerical study of pressure drop and heat transfer from circular and cam-shaped tube bank in cross-flow of nanofluid // Energy conversion and management. 2016. V. 129. P. 319–328.

  61. Lavasani A.M., Bayat H. Experimental study of convective heat transfer from inline cam shaped tube bank in crossflow // Applied thermal engineering. 2016. V. 65. P. 85–93.

  62. Дееб Р., Сиденков Д.В. Численное исследование теплообмена и аэродинамики одиночных труб каплевидной формы // Вестник Международной академии холода. 2020. № 3(60). С. 91–99.

  63. Deeb R., Sidenkov D.V. Numerical simulation of the heat transfer of staggered drop-shaped tubes bundle // IOP Conf. Series: Journal of Physics. 2019. DOI: 10.1088/1742-6596/ 1359/1/012135.

  64. Deeb R., Sidenkov D.V. Investigation of Flow Characteristics for Drop-shaped Tubes Bundle Using Ansys Package // 2020 V International Conference on Information Technologies in Engineering Education (Inforino). Moscow. Russia. 2020. DOI: 10.1109/Inforino48376.2020.9111775.

  65. Дееб Р., Колотвин А.В. Численное исследование и сравнение теплообмена и гидродинамики коридорного пучка труб круглой и каплевидной формы // Вестник Труды Академэнерго. 2020. Т. 60. № 3. С. 42–59.

  66. Deeb R., Sidenkov D.V. Calculation of radiation heat transfer in staggered drop-shaped tubes bundle // IOP Conf. Series: Journal of Physics. 2019. DOI: 10.1088/1742-6596/ 1675/1/012017.

  67. Deeb R., Sidenkov D.V. Numerical simulation of the heat transfer of staggered drop-shaped tubes bundle // IOP Conf. Series: Journal of Physics. 2020. DOI: 10.1088/1742-6596/1359/1/012135.

  68. Deeb R., Sidenkov D.V. Numerical modelling of heat transfer and hydrodynamics for drop-shaped tubes bundle // IOP Conf. Series: Journal of Physics. 2020. DOI: 10.1088/1742-6596/1683/4/042082.

  69. Deeb R., Sidenkov D.V. Numerical investigation of heat transfer and friction factor characteristics for staggered double drop-shaped tubes bundle in cross-flow// IOP Conf. Series: Journal of Physics. 2020. DOI: 10.1088/1742-6596/1683/4/042082.

  70. Дееб Р. Численное исследование характеристик теплообмена и гидравлического сопротивления шахматных пучков сдвоенных труб круглой и каплевидной формы // Тепловые процессы в технике. 2020. Т. 12. № 10. C. 434‒444.

  71. Deeb R. Effect of longitudinal spacing on the flow and heat transfer for staggered drop-shaped tubes bundle in cross-flow // Physical-Chemical Kinetics in Gas Dynamics. 2020. V. 21. http://chemphys.edu.ru/issues/2020-21-1/articles/878/

  72. Sayed A.S. et al. Parametric study of air cooling process via water cooled bundle of wing-shaped tubes // EIJST. 2012. V. 15. Р. 167–179.

  73. Жукова Ю.В., Терех А.М., Руденко А.И. Исследование конвективного теплообмена пакетов каплеобразных труб // X школа-семинар по проблемам тепломассообмена и гидродинамики в энергомашиностроении. 2016. С. 15–18.

  74. Wang J., Zheng H., Tian Z. Numerical simulation with a TVD—FVM method for circular cylinder wake control by a fairing // Journal of Fluids and Structures. 2015. V. 57. P. 15–31.

  75. Петров К.П. Аэродинамика тел простейших форм. М.: Физматлит, 1998. 428 с.

  76. Оardar A., Jacobi A. Heat transfer enhancement by wing-let-type vortex generator arrays in compact plain-fin-and-tube heat exchangers // Int. J. Refrig. 2008. V. 31. P. 87–97.

  77. Wu J.M., Tao W.Q. Numerical study on laminar convection heat transfer in a rectangular channel with longitudinal vortex generator, Part A: verification of field synergy principle // Int. J. Heat Mass Transf. 2008. V. 51. P. 1179–1191.

  78. Yoo S., Park D., Chung M. Heat transfer enhancement for fin—tube heat exchanger using vortex generators // KSME Int. J. 2002. V. 16. P. 109–115

  79. Depaiwa N., Chompookham T., Promvonge P. Thermal enhancement in a solar air heater channel using rectangular winglet vortex generators // Proceedings of the PEA-AIT International Conference on Energy and Sustainable Development: Issues and Strategies (ESD), IEEE, 2010, Chiang Mai, June 2–4. P. 1–7.

  80. Min C., Qi C., Kong X., Dong J. Experimental study of rectangular channel with modified rectangular longitudinal vortex generators // Int. J. Heat Mass Transf. 2010. V. 53. P. 3023–3029.

  81. Promvonge P., Chompookham T., Kwankaomeng S., Thianpong C. Enhanced heat transfer in a triangular ribbed channel with longitudinal vortex generators // Journal of Energy Conversion Management. 2010. V. 51. P. 1242–1249.

  82. Chompookham T., Thianpong C., Kwankaomeng S., Promvonge P. Heat transfer augmentation in a wedge—ribbed channel using winglet vortex generators // Int. Commun. Heat Mass Transf. 2010. V. 37. P. 163— 169.

  83. Wais P. Influence of fin thickness and winglet orientation on mass and thermal efficiency of cross-flow heat exchanger // Appl. Therm. Eng. 2016. V. 102. P. 184–195.

  84. Song K.W., Wang L.B. The effectiveness of secondary flow produced by vortex generators mounted on both surfaces of the fin to enhance heat transfer in a flat tube bank fin heat exchanger // J. Heat Transf. 2013. V. 135.

  85. Li L., Du X., Zhang Y., Yang L., Yang Y. International Journal of Thermal Sciences Numerical simulation on flow and heat transfer of fin-and-tube heat exchanger with longitudinal vortex generators. 2015. V. 92. P. 85–96.

  86. Tiwari S. et al. Heat transfer enhancement in cross-flow heat exchangers using oval tubes and multiple delta winglets // International Journal of Heat and Mass Transfer. 2003. V. 46. P. 2841–2856.

  87. Sayed A.S. et al. Experimental and numerical study on thermal-hydraulic performance of wing-shaped-tubes-bundle equipped with winglet vortex generators // Heat and Mass Transfer. 2018. V. 54. P. 727–744.

  88. Zhou G., Ye Q. Experimental investigations of thermal and flow characteristics of curved trapezoidal winglet type vortex generators // Appl. Therm. Eng. 2012. V. 37. P. 241–248.

  89. Hu W., Wang L., Guan Y., Hu W. The effect of shape of winglet vortex generator on the thermal — hydrodynamic performance of a circular tube bank fin heat exchanger // Heat Mass Transf. 2017. V. 53. P. 2961–2973.

mai.ru — информационный портал Московского авиационного института

© МАИ, 2018-2024