Comparative analysis of the latest improvements in heat transfer and hydrodynamic characteristics of smooth tubes in cross flow


Аuthors

Deeb R.

Damascus University, Syria, Damascus

e-mail: e.rawad.deeb@yandex.com, DeebR@mpei.ru

Abstract

This paper provides an overview of the latest developments aimed at improving the thermo-hydrodynamic efficiency of a heat exchanger. The influence of changes in the cross-section of the tube, the angle of attack, the use of fins and vortex generators on heat transfer, and pressure drop in heat exchangers is discussed. Various parameters are presented for evaluating the ther-mo-hydrodynamic characteristics of a heat exchanger. Empirical and numerical correlations for calculating heat transfer and hydrodynamics of tubes in cross flow are shown for the most important literary sources. Moreover, new research directions are targeted for further investigation in this area.

Keywords:

drop-shaped tube, flat tube, elliptical tube, lenticular tube, trapezoidal tube, circular tube, heat transfer, friction drag coefficient, angle of attack, winglet, fins, vortex generator

References

  1. Paul S.S., Ormiston S.J., Tachie M.F. Experimental and numerical investigation of turbulent cross-flow in a staggered tube bundle. Int. J. Heat Fluid Flow, 2008, vol. 29, no. 2, pp. 387–414. https://doi.org/10.1016/j.ijheatfluidflow.2007.10.001

  2. Ahmed H.E., et al. Turbulent heat transfer and nanofluid flow in a triangular duct with vortex generators. Int. J. Heat Mass Transf., 2017, vol. 105, pp. 495–504. https://doi.org/ 10.1016/j.ijheatmasstransfer.2016.10.009

  3. Shah R.K., Sekulic D.P. Fundamentals of heat exchanger design. New Jersey: JOHN WILEY & SONS, INC; 2003. 976 p.

  4. Standards of Tubular Exchanger Manufacturers Association. Fifth. 1968. New York.

  5. Standards of Tubular Exchanger Manufactures Association. Eighth. 1998. New York.

  6. Wu F., Zhang J., Ma X., Zhou W. Numerical simulation of gas-solid flow in a novel spouted bed: Influence of row number of longitudinal vortex generators. Adv. Powder Technol., 2018, vol. 29, no. 8, pp. 1848–1858.

  7. Chamoli S., Lu R., Xu D., Yu P. Thermal performance improvement of a solar air heater fitted with winglet vortex generators. Sol Energy, 2018, vol. 159, pp. 966–983.

  8. Liang G., Islam M.D., Kharoua N., Simmons R. Numerical study of heat transfer and flow behavior in a circular tube fitted with varying arrays of winglet vortex generators. Int. J. Therm. Sci., 2018, vol. 134, pp. 54–65. https://doi.org/ 10.1016/j.ijthermalsci.2018.08.004

  9. Promvonge P., Chompookham T., Kwankaomeng S., Thianpong C. Enhanced heat transfer in a triangular ribbed channel with longitudinal vortex generators. Energy Convers. Manag., 2010, vol. 51, no. 6, pp. 1242–1249.

  10. Samadifar M., Toghraie D. Numerical simulation of heat transfer enhancement in a plate-fin heat exchanger using a new type of vortex generators. Appl. Therm. Eng., 2018, vol. 133, pp. 671–681. https://doi.org/10.1016/j.applthermaleng.2018. 01.062

  11. Liu S, Sakr M. A comprehensive review on passive heat transfer enhancements in pipe exchangers. Renew Sustain Energy Rev,. 2013, vol. 19, pp. 64–81.

  12. Alam T, Saini R.P, Saini J.S. Heat and flow characteristics of air heater ducts provided with turbulators ‒ A review. Renew Sustain Energy Rev., 2014, vol. 31, pp. 289–304.

  13. Tahseen T.A., Ishak M., Rahman M.M. An overview on thermal and fluid flow characteristics in a plain plate finned and unfinned tube banks heat exchanger. Renew Sustain Energy Rev., 2015, vol. 43, pp. 363–380.

  14. Deshmukh P.W., Prabhu S.V., Vedula R.P. Heat transfer enhancement for laminar flow in tubes using curved delta wing vortex generator inserts. Appl. Therm Eng., 2016, vol. 106, pp. 1415–1426.

  15. Liang G., Islam M.D., Kharoua N., Simmons R. Numerical study of heat transfer and flow behavior in a circular tube fitted with varying arrays of winglet vortex generators. Int. J. Therm Sci., 2018, vol. 134, pp. 54–65. https://doi.org/ 10.1016/j.ijthermalsci.2018.08.004

  16. Keys V.M., London A.L. Compact heat exchangers. Moscow: Energia, 1967. 224 p. In Russ.

  17. Buyruk E. Numerical study of heat transfer characteristics on tandem cylinders, inline and staggered tube banks in cross-flow of air. International Communications in Heat and Mass Transfer, 2002, vol. 29, no. 3, pp. 355–366. https://doi.org/10.1016/S0735-1933(02)00325-1

  18. Lee D., Ahn J., Shin S. Uneven longitudinal pitch effect on tube bank heat transfer in cross flow. Appl. Therm. Eng., 2013, vol. 51, pp. 937–947. https://doi.org/10.1016/j.applthermaleng. 2012.10.031

  19. Petuhov B.S. Heat transfer and resistance in laminar flow in tubes. Moscow: Energiya, 1967. 409 p. In Russ.

  20. Petuhov B.S. Calculation of heat transfer and hydraulic resistance in a laminar flow of variable viscosity for a circular tube. Teploenergetika — Power Engineering, 1954, no. 9. In Russ.

  21. Roshko A. On the wake and drag of bluff bodies on the wake and drag of bluff bodies. J. Aeronaut. Sci., 1955, vol. 22, pp. 124–132.

  22. Gerrard J.H. The mechanics of the formation region of vortices behind bluff bodies. J. Fluid Mech., 1966, vol. 25, pp. 401–413.

  23. Roshko A. Experiments on the flow past a circular cylinder at very high Reynolds number. J. Fluid Mech., 1961, vol. 10, pp. 345–356.

  24. Li X., Zhu D., Yin Y., Liu S., Mo X. Experimental study on heat transfer and pressure drop of twisted oval tube bundle in cross flow. Exp. Therm. Fluid Sci., 2018, vol. 99, pp. 251–258.

  25. Zehua H., Sun D. Predicting local surface heat transfer coefficients by different turbulent k-ε models to simulate heat and simulate heat and moisture transfer during air-blast chilling. Int. J. Refrig., 2001, vol. 24, no. 7, pp. 702–717.

  26. Yakhot V. et al. Renormalization group modeling and turbulence simulations. International Conference on Near-Wall Turbulent Flows, Tempe, AZ, 1993.

  27. Soe T.M., Khaing S.Y. Comparison of turbulence models for computational fluid dynamics simulation of wind flow on cluster of buildings in mandalay. International Journal of Scientific and Research Publications, 2017, vol. 7, no. 8. pp. 2250–3153.

  28. ANSYS, Inc. ANSYS Fluent Reference Guide16.0. 2015.

  29. Merker G.P., Hanke H. Heat transfer and pressure drop on the shell-side of tube-banks having oval-shaped tubes. Int. J. Heat Mass Transf., 1986, vol. 29, no. 12, pp. 1903–1909.

  30. Ota T., Hideya N., Yukiyasu T. Heat transfer and flow around an elliptic cylinder. International Journal of Heat and Mass Transfer, 1984, vol. 27, pp. 1771–1779. https://doi.org/ 10.1016/0017-9310(84)90159-5

  31. Kondratyuk V.A., Semenyako A.V., Terekh A.M., Rudenko A.I., Zhukova Yu.V. Teploobmen i aehrodinamika odinochnykh trub ploskooval’nogo profilya [Heat transfer and aerodynamics of single flat oval tubes]. Sovremennaya nauka: issledovaniya, idei, rezul’taty, tekhnologii — Modern Science: Researches, Ideas, Results, Technologies, 2013, no. 1(12), pp. 3–6. In Russ.

  32. Toolthaisong S., Kasayapanand N. Effect of attack angles on air side thermal and pressure drop of the cross flow heat exchangers with staggered tube arrangement. Energy Procedia, 2013, vol. 34, pp. 417–429. https://doi.org/10.1016/ j.egypro.2013.06.770

  33. Zeeshan M., Nath S., Bhanja D. Numerical study to predict optimal configuration of fin and tube compact heat exchanger with various tube shapes and spatial arrangements. Energy Convers Manag., 2017, vol. 148, pp. 737–752. https://doi.org/10.1016/j.enconman.2017.06.011

  34. Park J.M., Kim O.J., Kim S.J., Shin Y.C. Heat transfer characteristics of circular and elliptic cylinders in cross flow. Adv. Mech. Eng., 2015, vol. 7, pp. 1–8.

  35. Horvat A., Leskovar M., Mavko B. Comparison of heat transfer conditions in tube bundle cross-flow for different tube shapes. Int. J. Heat Mass Transf., 2006, vol. 49, no. 5-6, pp. 1027–1038. https://doi.org/10.1016/j.ijheatmasstransfer. 2005.09.030

  36. Antufev V.M. Beleckij G.S. Teplootdacha i aehrodinamicheskie soprotivleniya rubchatykh poverkhnostej v poperechnom potoke [Heat transfer and aerodynamic resistance of ribbed surfaces in cross-flow]. Moscow, Leningrad: Mashgiz, 1948. 119 p. In Russ.

  37. Antufev V.M. Effektivnost’ razlichnykh form konvektivnykh poverkhnostej nagreva [Efficiency of various forms of convective heating surfaces]. Moscow, Leningrad: Energiya, 1966. 184 p. In Russ.

  38. Kejs V.M., London A.L. Compact heat exchangers. Мoscow: Gosenergoizdat, 1962. (in Russian)

  39. Brauer H. Mitt. Verein Grosskesselbesitzer. 1961, no. 73, pp. 260–276.

  40. Ibrahim T.A., Gomaa A. Thermal performance criteria of elliptic tube bundle in crossflow. International Journal of Thermal Sciences, 2009, vol. 48, pp. 2148–2158. https://doi.org/ 10.1016/j.ijthermalsci.2009.03.011

  41. Brauer H. Compact heat exchangers. J. Chem. Process Eng., 1964, pp. 451–460.

  42. Nishiyama H., Ota T., Matsuno T. Heat transfer and flow around elliptic cylinders in tandem arrangement. JASME Int. J. Ser II., 1988, vol. 31, no. 3, pp. 410–419. https://doi.org/ 10.1299/jsmeb1988.31.3_410

  43. Harris D.K., Goldschmidt V.W. Measurement of the overall heat transfer for combustion gases confined within elliptical tube heat exchangers. Exp. Therm. Fluid Sci., 2002, vol. 26, no. 1, pp. 33–37. https://doi.org/10.1016/ S0894-1777(02)00105-X

  44. Berbish N.S. Heat transfer and flow behavior around four staggered elliptic cylinders in cross flow. Heat Mass Transf. und Stoffuebertragung, 2011, vol. 47, pp. 287–300.

  45. Alawadhi E.M. Laminar forced convection flow past an inline elliptical cylinder array with inclination. J. Heat Transf., 2010, vol. 132, no. 7, p. 071701 (10 pages)

  46. Ota T., Hideya N., Yukiyasu T. Heat transfer and flow around an elliptic cylinder. International Journal of Heat and Mass Transfer, 1984, vol. 27, no. 10, pp. 1771–1779. https://doi.org/10.1016/0017-9310(84)90159-5

  47. Li Z., Davidson J.H., Mantell S.C. Numerical simulation of flow field and heat transfer of streamlined cylinders in cross flow. J. Heat Transf., 2006, vol. 128, no. 6, pp. 564–570.

  48. Ruth E.K. Experiments on a cross flow heat exchanger with tubes of lenticular shape. ASME J. Heat Transfer, 1983, vol. 105, pp. 571–575.

  49. Grimison D. Correlation and utilization of new data on flow resistance and heat transfer for cross-flow of gases over tube banks. Trans. ASME, 1937, vol. 59, pp. 583–594.

  50. Kong Y.Q., Yang L.J., Du X.Z., Yang Y.P. Air-side flow and heat transfer characteristics of flat and slotted finned tube bundles with various tube pitches. Int. J. Heat Mass Transf., 2016, vol. 90, pp. 357–371.

  51. Lam K., Lin Y.F., Zou L., Liu Y. Experimental study and large eddy simulation of turbulent flow around tube bundles composed of wavy and circular cylinders. Int. J. Heat Fluid Flow, 2010, vol. 31, pp. 32–44. https://doi.org/10.1016/ j.ijheatfluidflow.2009.10.006

  52. Sun L., Zhang C.L. Evaluation of elliptical finned tube heat exchanger performance using CFD and response surface methodology. Int. Thermal Sci., 2014, vol. 75, pp. 45–53.

  53. Migaj V.K. Modelirovanie teploobmennogo ehnergeticheskogo oborudovaniya [Modeling heat exchange power equipment]. Leningrad: Energoatomizdat, 1987. 260 p. In Russ.

  54. Migaj V.K. Povyshenie effektivnosti sovremennykh teploobmennikov [Improving the efficiency of modern heat exchangers]. Leningrad: Energia, 1980. 144 p. In Russ.

  55. Saffarian M.R., Fazelpour F., Sham M. Numerical study of shell and tube heat exchanger with different cross section tubes and combined tubes. Int. J. of Energy and Environmental Engineering, 2019, vol. 10, pp. 33–46.

  56. Dhiman A., Ghosh R. Computer simulation of momentum and heat transfer across an expanded trapezoidal bluff body. Int. J. of Heat and Mass Transfer, 2013, vol. 59, pp. 338–352.

  57. Chatterjee D., Mondal B. Unsteady mixed convection heat transfer from tandem square cylinders in cross flow at low Reynolds numbers. Heat Mass Transf., 2013, vol. 49, pp. 907–920

  58. Gupta A., Saha A.K. Suppression of vortex shedding in flow around square cylinder using control cylinder. European Journal of Mechanics — B/Fluids, 2019, vol. 76, pp. 276–291.

  59. Guanmin Z. et al. Flow and heat transfer characteristics around egg-shaped tube. Int. J. Heat Mass Transf., 2015, vol. 27, pp. 76–84.

  60. Lavasani A. M., Bayat H. Numerical study of pressure drop and heat transfer from circular and cam-shaped tube bank in cross-flow of nanofluid. Energy conversion and management, 2016, vol. 129, pp. 319–328.

  61. Lavasani A.M., Bayat H. Experimental study of convective heat transfer from inline cam shaped tube bank in crossflow. Applied thermal engineering, 2016, vol. 65, pp. 85–93.

  62. Deeb R., Sidenkov D.V. Chislennoe issledovanie teploobmena i aehrodinamiki odinochnykh trub kaplevidnoj formy [Numerical investigation of heat transfer and aerodynamics of single drop-shaped tube]. Vestnik Mezhdunarodnoi akademii kholoda — Journal of International Academy of Refrigeration, 2020, no. 3, pp. 91–99. In Russ.

  63. Deeb R., Sidenkov D.V. Numerical simulation of the heat transfer of staggered drop-shaped tubes bundle. IOP Conf. Series: Journal of Physics. 2019.

  64. Deeb R., Sidenkov D.V. Investigation of flow characteristics for drop-shaped tubes bundle using ANSYS package. 2020 V International Conference on Information Technologies in Engineering Education (Inforino). Moscow. Russia. 2020.

  65. Deeb R., Kolotvin A.V. Chislennoe issledovanie i sravnenie teploobmena i gidrodinamiki koridornogo puchka trub krugloj i kaplevidnoj formy [Numerical investigation of heat transfer and hydrodynamics for inline drop-shaped tubes bundle]. Vestnik Trudy Akademenergo — Transactions of Academenergo, 2020, no. 3 (60), pp. 42–59. In Russ.

  66. Deeb R., Sidenkov D.V. Calculation of radiation heat transfer in staggered drop-shaped tubes bundle. IOP Conf. Series: Journal of Physics. 2019.

  67. Deeb R., Sidenkov D.V. Numerical simulation of the heat transfer of staggered drop-shaped tubes bundle. IOP Conf. Series: Journal of Physics. 2020.

  68. Deeb R., Sidenkov D.V. Numerical modelling of heat transfer and hydrodynamics for drop-shaped tubes bundle. IOP Conf. Series: Journal of Physics. 2020.

  69. Deeb R., Sidenkov D.V. Numerical investigation of heat transfer and friction factor characteristics for staggered double drop-shaped tubes bundle in cross-flow. IOP Conf. Series: Journal of Physics. 2020.

  70. Deeb R. Chislennoe issledovanie kharakteristik teploobmena i gidravlicheskogo soprotivleniya shakhmatnykh puchkov sdvoennykh trub krugloj i kaplevidnoj formy [Numerical study of heat transfer characteristics and friction factor for staggered circular and drop-shaped double tubes bundles]. Teplovye protsessy v tekhnike — Thermal processes in engineering, 2020, vol. 12, no. 10, pp. 434–444. In Russ.

  71. Deeb R. Effect of longitudinal spacing on the flow and heat transfer for staggered drop-shaped tubes bundle in cross-flow. Physical-Chemical Kinetics in Gas Dynamics, 2020, vol. 21, no. 1, 16 p.

  72. Sayed S., Mesalhy O., Khass T., Hassan A. Parametric study of air cooling process via water cooled bundle of wing-shaped tubes. EIJST, 2012, vol. 15, pp. 167–179.

  73. Zhukova Yu.V., Terekh A.M., Rudenko A.I. Issledovanie konvektivnogo teploobmena paketov kapleobraznykh trub [Investigation of convective heat transfer of droplet tube packages]. X shkola-seminar po problemam teplomassoobmena i gidrodinamiki v energomashinostroenii [X school-seminar on the problems of heat and mass transfer and hydrodynamics in power engineering], Kazan, Russia, 2016, pp. 15–18. In Russ.

  74. Wang J., Zheng H., Tian Z. Numerical simulation with a TVD—FVM method for circular cylinder wake control by a fairing. Journal of Fluids and Structures, 2015, vol. 57, pp. 15–31.

  75. Petrov K.P. Аerodinamika tel prostejshikh form [Aerodynamics of bodies of the simplest shapes]. Moscow: Fismatlit, 1998. 428 p. In Russ.

  76. Оardar A., Jacobi A. Heat transfer enhancement by wing-let-type vortex generator arrays in compact plain-fin-and-tube heat exchangers. Int. J. Refrig., 2008, vol. 31, no. 1, pp. 87–97.

  77. Wu J.M., Tao W.Q. Numerical study on laminar convection heat transfer in a rectangular channel with longitudinal vortex generator, Part A: verification of field synergy principle. Int. J. Heat Mass Transf., 2008, vol. 51, pp. 1179–1191.

  78. Yoo S., Park D., Chung M. Heat transfer enhancement for fin—tube heat exchanger using vortex generators. KSME Int J., 2002, vol. 16, no. 1, pp. 109–115.

  79. Depaiwa N., Chompookham T., Promvonge P. Thermal enhancement in a solar air heater channel using rectangular winglet vortex generators. Proceedings of the PEA-AIT In-ternational Conference on Energy and Sustainable Development: Issues and Strategies (ESD), IEEE, 2010, Chiang Mai, June 2–4. 2010, pp. 1–7.

  80. Min C., Qi C., Kong X., Dong J. Experimental study of rectangular channel with modified rectangular longitudinal vortex generators. Int. J. Heat Mass Transf., 2010, vol. 53, pp. 3023–3029.

  81. Promvonge P., Chompookham T., Kwankaomeng S., Thianpong C. Enhanced heat transfer in a triangular ribbed channel with longitudinal vortex generators. Journal of Energy Conversion Management, 2010, vol. 51. pp. 1242–1249.

  82. Chompookham T., Thianpong C., Kwankaomeng S., Promvonge P. Heat transfer augmentation in a wedge—ribbed channel using winglet vortex generators. Int. Commun. Heat Mass. Transf., 2010, vol. 37, no. 1, pp. 163–169.

  83. Wais P. Influence of fin thickness and winglet orientation on mass and thermal efficiency of cross-flow heat exchanger. Appl. Therm. Eng., 2016, vol. 102. pp. 184–195.

  84. Song K.W., Wang L.B. The effectiveness of secondary flow produced by vortex generators mounted on both surfaces of the fin to enhance heat transfer in a flat tube bank fin heat exchanger. J. Heat Transf., 2013, vol. 135.

  85. Li L., Du X., Zhang Y., Yang L., Yang Y. Numerical simulation on flow and heat transfer of fin-and-tube heat exchanger with longitudinal vortex generators. International Journal of Thermal Sciences, 2015, vol. 92, pp. 85–96.

  86. Tiwari S., Maurya D., Biswas G., Eswaran V. Heat transfer enhancement in cross-flow heat exchangers using oval tubes and multiple delta winglets. International Journal of Heat and Mass Transfer, 2003, vol. 46, no. 15, pp. 2841–2856.

  87. Sayed A.S. et al. Experimental and numerical study on thermal-hydraulic performance of wing-shaped-tubes-bundle equipped with winglet vortex generators. Heat and Mass Transfer, 2018, vol. 54, no. 3, pp. 727–744.

  88. Zhou G., Ye Q. Experimental investigations of thermal and flow characteristics of curved trapezoidal winglet type vortex generators. Applied Thermal Engineering, 2012, vol. 37, pp. 241–248.

  89. Hu W., Wang L., Guan Y., Hu W. The effect of shape of winglet vortex generator on the thermal — hydrodynamic performance of a circular tube bank fin heat exchanger. Heat Mass Transf., 2017, vol. 53, pp. 2961–2973.

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI