DOI: 10.34759/tpt-2021-13-10-467-480
Авторы
Семенов Д. С.1*,
Ненарокомов А. В.2**,
Кудрявцев Н. Д.3***
1. Московский авиационный институт (национальный исследовательский университет), 125993, г. Москва, Волоколамское шоссе, д. 4
2. Кафедра 601 «Космические системы и ракетостроение»,
3. Государственное бюджетное учреждение здравоохранения «Научно-практический клинический центр диагностики и телемедицинских технологий Департамента здравоохранения города Москвы», 127051, Москва
*e-mail: semenov_ds@icloud.com
**e-mail: nenarokomovav@mai.ru
***e-mail: n.kudryavtsev@npcmr.ru
Аннотация
Температура является одним из наиболее широко распространенных параметров тела пациента, используемых в клинической практике. Развитие технологий привело к появлению целого спектра измерительных систем, обладающих своими преимуществами и недостатками. С целью выявления областей техники, требующих модернизации и развития, был проведен анализ обзоров литературных источников, посвященных вопросам термометрии в медицине и опубликованных за последнее десятилетие. В работе представлено описание методов измерения температуры, а также выделены преимущества и недостатки с точки зрения их практического применения.
Ключевые слова:
методы термометрии, медицина, обзор, точность измерений, практическое применение
Библиографический список
- Wright W.F. Early evolution of the thermometer and application to clinical medicine // J. Therm. Biol. 2016. V. 56. P. 18–30.
- MacRae B.A. et al. Skin temperature measurement using contact thermometry: A systematic review of setup variables and their effects on measured values // Front. Physiol. 2018. V. 9. № JAN. P. 1–24.
- Childs C. Body temperature and clinical thermometry // Handbook of Clinical Neurology. 1st ed. 2018. V. 157. P. 467–482.
- Pecoraro V. et al. The diagnostic accuracy of digital, infrared and mercury-in-glass thermometers in measuring body temperature: a systematic review and network meta-analysis // Intern. Emerg. Med. 2021. V. 16. N 4. P. 1071–1083.
- Van Rhoon G.C. Is CEM43 still a relevant thermal dose parameter for hyperthermia treatment monitoring? // Int. J. Hyperth. 2016. V. 32. N 1. P. 50–62.
- Myerson R.J. et al. Components of a hyperthermia clinic: Recommendations for staffing, equipment, and treatment monitoring // Int. J. Hyperth. 2014. V. 30. N 1. P. 1–5.
- Schooneveldt G. et al. Thermal dosimetry for bladder hyperthermia treatment. An overview // Int. J. Hyperth. 2016. V. 32. N 4. P. 417–433.
- Lewis M.A., Staruch R.M., Chopra R. Thermometry and ablation monitoring with ultrasound // International Journal of Hyperthermia. 2015. V. 31. N 2. P. 163–181. https://doi.org/ 10.3109/02656736.2015.1009180
- Sessler D.I. Perioperative Temperature Monitoring // Anesthesiology. 2020. N 1. P. 111–118.
- Ode K., Selvaraj S., Smith A.F. Monitoring regional blockade // Anaesthesia. 2017. V. 72. P. 70–75.
- Strapazzon G. et al. Pre-hospital core temperature measurement in accidental and therapeutic hypothermia // High Alt. Med. Biol. 2014. V. 15. N 2. P. 104–111.
- Yeoh W.K. et al. Revisiting the tympanic membrane vicinity as core body temperature measurement site // PLoS One. 2017. V. 12. N 4. P. 1–21.
- Mahbub M.H., Harada N. Review of different quantification methods for the diagnosis of digital vascular abnormalities in hand-arm vibration syndrome // J. Occup. Health. 2011. V. 53. N 4. P. 241–249.
- Tewolde S. et al. Epileptic seizure detection and prediction based on continuous cerebral blood flow monitoring — A review // J. Healthc. Eng. 2015. V. 6. N 2. P. 159–178.
- Тагиева Н.Р. Инвазивные методы выявления нестабильных атеросклеротических бляшек в коронарных артериях. // Кардиология. 2014. № 11. P. 46–56.
- Hasselberg M.J., McMahon J., Parker K. The validity, reliability, and utility of the iButton® for measurement of body temperature circadian rhythms in sleep/wake research // Sleep Med. 2013. V. 14. N 1. P. 5–11.
- Roriz P. et al. Optical fiber temperature sensors and their biomedical applications // Sensors. 2020. Vol. 20. N 7.
- Salas N., Castle S.M., Leveillee R.J. Radiofrequency ablation for treatment of renal tumors: Technological principles and outcomes // Expert Rev. Med. Devices. 2011. V. 8. N 6. P. 695–707.
- Kokuryo D., Kumamoto E., Kuroda K. Recent technological advancements in thermometry // Adv. Drug Deliv. Rev. 2020. V. 163–164. P. 19–39.
- Lohman R.F. et al. An analysis of current techniques used for intraoperative flap evaluation // Ann. Plast. Surg. 2015. V. 75. N 6. P. 679–685.
- Schnelldorfer T. Image-enhanced laparoscopy: A promising technology for detection of peritoneal micrometastases // Surgery. Mosby, Inc. 2012. V. 151. N 3. P. 345–350.
- Childs C., Soltani H. Abdominal cutaneous thermography and perfusion mapping after caesarean section: A scoping review // Int. J. Environ. Res. Public Health. 2020. V. 17. N 22. P. 1–22.
- Bharara M., Schoess J., Armstrong D.G. Coming events cast their shadows before: detecting inflammation in the acute diabetic foot and the foot in remission // Diabetes. Metab. Res. Rev. 2012. V. 28. № Suppl 1. P. 15–20.
- Sciascia S. et al. Thermography in systemic sclerosis patients and other rheumatic diseases: Diagnosis, disease activity assessment, and therapeutic monitoring // Autoimmun. Rev. 2020. V. 19. N 2. P. 102449.
- Hillen B. et al. Infrared Thermography in Exercise Physiology: The Dawning of Exercise Radiomics // Sport. Med. 2020. V. 50. N 2. P. 263–282.
- Sanchis-Sánchez E. et al. Infrared thermal imaging in the diagnosis of musculoskeletal injuries: A systematic review and meta-analysis // Am. J. Roentgenol. 2014. V. 203. N 4. P. 875–882.
- Thiessen F.E.F. et al. Dynamic InfraRed Thermography (DIRT) in DIEP-flap breast reconstruction: A review of the literature // Eur. J. Obstet. Gynecol. Reprod. Biol. 2019. V. 242. P. 47–55.
- Mountz J.M., Alavi A., Mountz J.D. Emerging optical and nuclear medicine imaging methods in rheumatoid arthritis // Nat. Rev. Rheumatol. 2012. V. 8. N 12. P. 719–728.
- Аветисов С.Э. и др. Применение термографии в офтальмологии // Вестник офтальмологии. 2017. Т. 6. С. 99–104.
- Topalidou A. et al. Thermal imaging applications in neonatal care: A scoping review // BMC Pregnancy Childbirth. BMC Pregnancy and Childbirth, 2019. V. 19. N 1.
- Tavares I.M. et al. A review of infrared thermography as applied to human sexual psychophysiology // Int. J. Psychophysiol. 2018. V. 133. P. 28–40.
- Oliveira A.L. et al. Accuracy of ultrasound, thermography and subepidermal moisture in predicting pressure ulcers: A systematic review // J. Wound Care. 2017. V. 26. N 5. P. 199–215.
- Dibai-Filho A.V., Guirro R.R.D.J. Evaluation of myofascial trigger points using infrared thermography: A critical review of the literature // J. Manipulative Physiol. Ther. National University of Health Sciences, 2015. V. 38. N 1. P. 86–92.
- Solivetti F.M. et al. HF ultrasound vs PET-CT and telethermography in the diagnosis of in-Transit metastases from melanoma: A prospective study and review of the literature // J. Exp. Clin. Cancer Res. 2014. V. 33. N 1. P. 1–7.
- Kadado A.J., Akar J.G., Hummel J.P. Luminal esophageal temperature monitoring to reduce esophageal thermal injury during catheter ablation for atrial fibrillation: A review // Trends Cardiovasc. Med. 2019. V. 29. N 5. P. 264–271.
- Raiko J., Koskensalo K., Sainio T. Imaging-based internal body temperature measurements: The journal Temperature toolbox // Temperature. 2020. V. 7. N 4. P. 363–388.
- Antink C.H. et al. A Broader Look: Camera-Based Vital Sign Estimation across the Spectrum // Yearb. Med. Inform. 2019. V. 28. N 1. P. 102–114.
- Жорина Л.В. Методы неинвазивного измерения внутренней температуры тела // Вестник ТГУ. 2017. T. 22. № 2. С. 464–470.
- Drakopoulou M. et al. The role of microwave radiometry in carotid artery disease. Diagnostic and clinical prospective // Curr. Opin. Pharmacol. 2018. V. 39. P. 99–104.
- Snow B.W. New noninvasive methods to diagnose vesicou-reteral reflux // Curr. Opin. Urol. 2011. V. 21. N 4. P. 339–342.
- Zhou Y. Noninvasive Thermometry in High-Intensity Focused Ultrasound Ablation // Ultrasound Q. 2017. V. 33. N 4. P. 253–260.
- Liu S. et al. Electromagnetic—Acoustic sensing for biomedical applications // Sensors. 2018. V. 18. N 10.
- Fani F. et al. CT-based thermometry: An overview // Int. J. Hyperth. 2014. V. 30. N 4. P. 219–227.
- Odeen H., Parker D.L. Magnetic resonance thermometry and its biological applications — Physical principles and practical considerations // Prog. Nucl. Magn. Reson Spectrosc. 2019. V. 110. P. 34–61.
- Zaltieri M. et al. Techniques for temperature monitoring of myocardial tissue undergoing radiofrequency ablation treatments: An overview // Sensors. 2021. V. 21. N 4. P. 1–27.
- LaRiviere M.J., Gross R.E. Stereotactic Laser Ablation for Medically Intractable Epilepsy: The Next Generation of Minimally Invasive Epilepsy Surgery // Front. Surg. 2016. V. 3. P. 64.
- Muller B.G. et al. Imaging modalities in focal therapy: Patient selection, treatment guidance, and follow-up // Curr. Opin. Urol. 2014. V. 24. N 3. P. 218–224.
- Patel N.V. et al. Laser interstitial thermal therapy technology, physics of magnetic resonance imaging thermometry, and technical considerations for proper catheter placement during magnetic resonance imaging—Guided laser interstitial thermal therapy // Clin. Neurosurg. 2016. V. 79. N 6. P. S8—S16.
- Zhu L. et al. Ultrasound Hyperthermia Technology for Radiosensitization // Ultrasound Med. Biol. 2019. V. 45. N 5. P. 1025–1043.
- Diaz R. et al. Laser interstitial thermal therapy: Lighting the way to a new treatment option in neurosurgery // Clin. Neurosurg. 2016. V. 79. N 6. P. S3—S7.
- Feng Y., Fuentes D. Model-based planning and real-time predictive control for laser-induced thermal therapy // Int. J. Hyperth. 2011. V. 27. N 8. P. 751–761.
- Datta N.R. et al. Local hyperthermia combined with radio-therapy and-/or chemotherapy: Recent advances and promises for the future // Cancer Treat. Rev. 2015. V. 41. N 9. P. 742–753.
- Kuroda K. MR techniques for guiding high-intensity focused ultrasound (HIFU) treatments // J. Magn. Reson. Imaging. 2018. V. 47. N 2. P. 316–331.
- Fischer L.H., Harms G.S., Wolfbeis O.S. Upconverting nanoparticles for nanoscale thermometry // Angew. Chemie — Int. Ed. 2011. V. 50. N 20. P. 4546–4551.
- Qiao J., Mu X., Qi L. Construction of fluorescent polymeric nano-thermometers for intracellular temperature imaging: A review // Biosens. Bioelectron. 2016. V. 85. P. 403–413.
- Schirhagl R. et al. Nitrogen-vacancy centers in diamond: Nanoscale sensors for physics and biology // Annu. Rev. Phys. Chem. 2014. Vol. 65. P. 83–105.
- Zhou H. et al. Nanothermometry: From Microscopy to Thermal Treatments // ChemPhysChem. 2016. V. 17. N 1. P. 27–36.
- Rocha J., Brites C.D.S., Carlos L.D. Lanthanide Organic Framework Luminescent Thermometers // Chem. A Eur. J. 2016. V. 22. N 42. P. 14782–14795.
- Bednarkiewicz A. et al. Standardizing luminescence nanothermometry for biomedical applications // Nanoscale. 2020. V. 12. N 27. P. 14405–14421.
- Zhou J. et al. Advances and challenges for fluorescence nanothermometry // Nat. Methods. Springer US, 2020. V. 17. N 10. P. 967–980.
- Suzuki M., Plakhotnik T. The challenge of intracellular temperature // Biophys. Rev. 2020. V. 12. P. 593–600.
- Kenny G.P., Jay O. Thermometry, calorimetry, and mean body temperature during heat stress // Compr. Physiol. 2013. V. 3. N 4. P. 1689–1719.
- Bach A.J.E. et al. Does the technique employed for skin temperature assessment alter outcomes? A systematic review // Physiol. Meas. 2015. V. 36. N 9. P. R27—R51.
- Sedaghat F., Tuncali K. Enabling Technology for MRI-Guided Intervention // Top. Magn. Reson. Imaging. 2018. V. 27. N 1. P. 5–8.
- Saccomandi P., Schena E., Silvestri S. Techniques for temperature monitoring during laser-induced thermotherapy: An overview // Int. J. Hyperth. 2013. V. 29. N 7. P. 609–619.
- Neves E.B. et al. Different responses of the skin temperature to physical exercise: Systematic review // Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS. 2015. V. 2015-Novem. P. 1307–1310.
- Moreira D.G. et al. Thermographic imaging in sports and exercise medicine: A Delphi study and consensus statement on the measurement of human skin temperature // J. Therm. Biol. 2017. V. 69. P. 155–162.
- Daanen H. et al. COVID-19 and thermoregulation-related problems: Practical recommendations // Temperature. Taylor & Francis, 2021. V. 8. N 1. P. 1–11.
- Mazerolle S.M. et al. Is oral temperature an accurate measurement of deep body temperature? A systematic review // J. Athl. Train. 2011. V. 46. N 5. P. 566–573.
- Geijer H. et al. Temperature measurements with a temporal scanner: Systematic review and meta-analysis // BMJ Open. 2016. V. 6. N 3.
- Hughes C., Voros S., Moreau-Gaudry A. Unintended Consequences of Sensor, Signal, and Imaging Informatics: New Problems and New Solutions // Yearb. Med. Inform. 2016. N 1. P. 159–162.
- Blazek V. et al. Active and Passive Optical Imaging Modality for Unobtrusive Cardiorespiratory Monitoring and Facial Expression Assessment // Anesth. Analg. 2017. V. 124. N 1. P. 104–119.
- Taylor W. et al. A review of the state of the art in non-contact sensing for covid-19 // Sensors. 2020. V. 20. N 19. P. 1–19.
- Sousa P. et al. A review of thermal methods and technologies for diabetic foot assessment // Expert Rev. Med. Devices. 2015. V. 12. N 4. P. 439–448.
- Adam M. et al. Computer aided diagnosis of diabetic foot using infrared thermography: A review // Comput. Biol. Med. 2017. V. 91. P. 326–336.
- Ring E.F.J., Ammer K. Infrared thermal imaging in medicine // Physiol. Meas. 2012. V. 33. N 3.
- MacHoy M. et al. Diagnosis of Temporomandibular Disorders Using Thermovision Imaging // Pain Res. Manag. 2020. V. 2020.
- Naziyok T.P., Zeleke A.A., Röhrig R. Contactless patient monitoring for general wards: A systematic technology review // Stud. Health Technol. Inform. 2017. V. 228. P. 707–711.
- Magalhaes C., Vardasca R., Mendes J. Recent use of medical infrared thermography in skin neoplasms // Ski. Res. Technol. 2018. V. 24. N 4. P. 587–591.
- Herrick A.L., Murray A. The role of capillaroscopy and thermography in the assessment and management of Raynaud’s phenomenon // Autoimmun. Rev. 2018. V. 17. N 5. P. 465–472.
- Schnelldorfer T. et al. From shadow to light: Visualization of extrahepatic bile ducts using image-enhanced laparoscopy // Surg. Innov. 2015. V. 22. N 2. P. 194–200.
- Mehmood N. et al. Applications of modern sensors and wireless technology in effective wound management // J. Biomed. Mater. Res. — Part B Appl. Biomater. 2014. V. 102. N 4. P. 885–895.
- Oey C.H.W., Moh S. A survey on temperature-aware routing protocols in Wireless Body Sensor Network // Sensors. 2013. V. 13. N 8. P. 9860–9877.