A review of thermometry methods in medicine


Аuthors

Semenov D. S.1*, Nenarokomov A. V.2**, Kudryavtsev N. D.3***

1. Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia
2. ,
3. Practical and Clinical Research Center of Diagnostics and Telemedical Technologies, Department of Healthcare of Moscow, Moscow, 127051, Russia

*e-mail: semenov_ds@icloud.com
**e-mail: nenarokomovav@mai.ru
***e-mail: n.kudryavtsev@npcmr.ru

Abstract

Body temperature is one of the most frequent characteristics of a patient’s health status. The history of the thermometry application in medicine begins more than two thousand years ago. The applied technical and methodological solutions herewith were constantly evolving. The purpose of this work consisted in revealing the areas of technology that require modernization. To this end, the analysis of literature reviews in the field of medicine devoted to temperature measuring and published over the past ten years was performed. For each method presented in the literature, a brief description was formulated and the key characteristics, advantages, and disadvantages of its application in practice were highlighted. Passive methods employed in medicine include application of liquid thermometers, thermocouples, zero heat flux and fiber optic sensors, thermistors and measurements of radiation in the infrared and near-infrared range. Active methods are based on microwave, ultrasonic and acoustic thermometry. Besides, indirect temperature measurement is being performed by computed tomography and magnetic resonance imaging. Thus, we are facing a whole range of technical solutions aimed at the temperature measuring of the patient’s tissues. They differ in accuracy, resolution, need for direct contact, negative health effects, and cost. The most commonly used are the surface temperature measurements for the comprehensive assessment of a patient’s condition or diagnosis of a specific disease. Frequently employed thermotherapy methods (such as ultrasonic or laser hyperthermia and thermal ablation) also require monitoring of the temperature field of both the object and nearby tissues. As the result, a significant number of technical solutions is presented in this area as well. The pros and contras analysis of all methods revealed that the stumbling block in the issue of thermometry was the balance between the temperature measurement accuracy and the resolution of the method. The effectiveness herewith of a particular solution employing largely depends on the applied technique. Thus, an inference can be drawn that the industry needs the development of easy-to-use and reasonably accurate non-invasive thermometry methods.

Keywords:

thermometry methods, medicine, review, measurement accuracy, practical application

References

  1. Wright W.F. Early evolution of the thermometer and application to clinical medicine. J. Therm. Biol., 2016, vol. 56, pp. 18–30. DOI: 10.1016/j.jtherbio.2015.12.003
  2. Braid A. MacRae, Simon Annaheim, Christina M. Spengler, René M. Rossi. Skin temperature measurement using contact thermometry: A systematic review of setup variables and their effects on measured values. Front. Physiol, 2018, vol. 9, no. JAN, pp. 1–24. DOI: 10.3389/fphys.2018.00029
  3. Childs C. Body temperature and clinical thermometry. Handbook of Clinical Neurology, 1st ed., 2018, vol. 157, pp. 467–482. DOI: 10.1016/B978-0-444-64074-1.00029-X
  4. Valentina Pecoraro, Davide Petri, Giorgio Costantino, Alessandro Squizzato, Lorenzo Moja, Gianni Virgili, Ersilia Lucenteforte. The diagnostic accuracy of digital, infrared and mercury-in-glass thermometers in measuring body temperature: a systematic review and network meta-analysis. Intern. Emerg. Med., 2021, vol. 16, no. 4, pp. 1071–1083. DOI: 10.1007/s11739-020-02556-0
  5. Van Rhoon G.C. Is CEM43 still a relevant thermal dose parameter for hyperthermia treatment monitoring? Int. J. Hyperth., 2016, vol. 32, no. 1, pp. 50–62. DOI: 10.3109/02656736.2015.1114153
  6. Robert J. Myerson, Eduardo G. Moros, Chris J. Diederich, Dieter Haemmerich, Mark D. Hurwitz, I.-C. Joe Hsu, Robert J. McGough, William H. Nau, William L. Straube, Paul F. Turner, Zeljko Vujaskovic, Paul R. Components of a hyperthermia clinic: Recommendations for staffing, equipment, and treatment monitoring. Int. J. Hyperth., 2014, vol. 30, no. 1, pp. 1–5. DOI: 10.3109/02656736.2013.861520
  7. Gerben Schooneveldt, Akke Bakker, Edmond Balidemaj, Rajiv Chopra, Johannes Crezee, Elisabeth D. Geijsen, Josefin Hartmann, Maarten C.C.M. Hulshof, H. Petra Kok, Margarethus M. Paulides, Alejandro Sousa-Escandon, Paul R. Stauffer, Paolo F. Maccarini. Thermal dosimetry for bladder hyperthermia treatment. An overview. Int. J. Hyperth., 2016, vol. 32, no. 4, pp. 417–433. DOI: 10.3109/02656736.2016.1156170
  8. Lewis M.A., Staruch R.M., Chopra R. Thermometry and ablation monitoring with ultrasound. Int. J. Hyperthermia, 2015, vol. 6736, no. 2, pp. 163–181. DOI: 10.3109/0265 6736.2015.1009180
  9. Sessler D.I. Perioperative Temperature Monitoring. Anesthesiology, 2020, no. 1, pp. 111–118. DOI: 10.1097/ALN.00 00000000003481
  10. Ode K., Selvaraj S., Smith A.F. Monitoring regional blockade. Anaesthesia, 2017, vol. 72, pp. 70–75. DOI: 10.1111/anae.13742
  11. Giacomo Strapazzon, Emily Procter, Peter Paal, Hermann Brugger. Pre-hospital core temperature measurement in accidental and therapeutic hypothermia. High Alt. Med. Biol., 2014, vol. 15, no. 2, pp. 104–111. DOI: 10.1089/ham.2014.1008
  12. Wui Keat Yeoh, Jason Kai Wei Lee, Hsueh Yee Lim, Chee Wee Gan, Wenyu Liang, Kok Kiong Tan. Revisiting the tympanic membrane vicinity as core body temperature measurement site. PLoS One., 2017, vol. 12, no. 4, pp. 1–21. DOI: 10.1371/journal.pone.0174120
  13. Mahbub M.H., Harada N. Review of different quantification methods for the diagnosis of digital vascular abnormalities in hand-arm vibration syndrome, J. Occup. Health., 2011, vol. 53, no. 4, pp. 241–249.
  14. Senay Tewolde, Kalarickal Oommen, Donald Y.C. Lie, Yuanlin Zhang, Ming-Chien Chyu. Epileptic seizure detection and prediction based on continuous cerebral blood flow monitoring — A review. J. Healthc. Eng., 2015, vol. 6, no. 2, pp. 159–178.
  15. Tagieva N.R., Shakhnovich R.M., Veselova T.N. Noninvasive methods of detection of vulnerable atherosclerotic plaques in coronary arteries. Kardiologiya, 2014, no. 11, pp. 46–56.
  16. Hasselberg M.J., McMahon J., Parker K. The validity, reliability, and utility of the iButton® for measurement of body temperature circadian rhythms in sleep/wake research. Sleep Med, 2013, vol. 14, no. 1, pp. 5–11. DOI: 10.1016/j. sleep.2010.12.011
  17. Roriz P., Silva S., Frazao O., Novais S. Optical fiber temperature sensors and their biomedical applications. Sensors, 2020, vol. 20, no. 7.
  18. Salas N., Castle S.M., Leveillee R.J. Radiofrequency ablation for treatment of renal tumors: Technological principles and outcomes. Expert Rev. Med Devices, 2011, vol. 8, no. 6. pp. 695–707. DOI: 10.1586/ERD.11.51
  19. Kokuryo D., Kumamoto E., Kuroda K. Recent technological advancements in thermometry. Adv. Drug Deliv Rev, 2020, vol. 163–164, pp. 19–39. DOI: 10.1016/j.addr.2020.11.001
  20. Lohman R.F. , Ozturk C.N.. Ozturn C., Jayprakash V., Djohan R. An analysis of current techniques used for intraoperative flap evaluation. Ann. Plast. Surg, 2015, vol. 75, no. 6, pp. 679–685. DOI: 10.1097/SAP.0000000000000235
  21. Schnelldorfer T. Image-enhanced laparoscopy: A promising technology for detection of peritoneal micrometastases. Surgery. Mosby, Inc., 2012, vol. 151, no. 3, pp. 345–350. DOI: 10.1016/j.surg.2011.12.012
  22. Childs C., Soltani H. Abdominal cutaneous thermography and perfusion mapping after caesarean section: A scoping review. Int. J. Environ. Res. Public Health, 2020, vol. 17, no. 22, pp. 1–22. DOI: 10.3390/ijerph17228693
  23. Bharara M., Schoess J., Armstrong D.G. Coming events cast their shadows before: detecting inflammation in the acute diabetic foot and the foot in remission. Diabetes. Metab. Res. Rev, 2012, vol. 28, no. 1, pp. 15–20. DOI: 10.1002/dmrr.2231
  24. Sciascia S., Cecchi I., Massara C., Rossi D., Radin M., Ladehesa P.L., Cuinazu F., Ribini E., Foddai S.G., Alba P., Escudero A., Menegatti E., Roccatello D. Thermography in systemic sclerosis patients and other rheumatic diseases: Diagnosis, disease activity assessment, and therapeutic monitoring. Autoimmun. Rev, 2020, vol. 19, no. 2, pp. 102449. DOI: 10.1016/j.autrev.2019.102449
  25. Hillen B., Pfirrmann D., Nagele M., Simon P. Infrared Thermography in Exercise Physiology: The Dawning of Exercise Radiomics. Sport. Med., 2020, vol. 50, no. 2, pp. 263–282. DOI: doi.org/10.1007/s40279-019-01210-w
  26. Sanchis-Sánchez E., Vergara-Hernandez C., Cibrian M.R., Salvador R., Sanchis E., Codoner-Franch P. Infrared thermal imaging in the diagnosis of musculoskeletal injuries: A systematic review and meta-analysis. Am. J. Roentgenol, 2014, vol. 203, no. 4, pp. 875–882. DOI: 10.2214/ AJR.13.11716
  27. Thiessen F.E.F., Tondu T., Cloostermans B., Dirkx Y.A.L., Auman D., Cox S., Verhoeven V., Hubens G., Steenackers C., Tjalma W.A.A. Dynamic InfraRed Thermography (DIRT) in DIEP-flap breast reconstruction: A review of the literature. Eur. J. Obstet. Gynecol. Reprod. Biol., 2019, no. 242, pp. 47–55. DOI: 10.1016/j.ejogrb.2019.08.008
  28. Mountz J.M., Alavi A., Mountz J.D. Emerging optical and nuclear medicine imaging methods in rheumatoid arthritis. Nat. Rev. Rheumatol, 2012, vol. 8, no. 12, pp. 719–728. DOI: 10.10.38/nrrheum.2012.148
  29. Avetisov S.E., Novikov I.A., Lutsevich E.E., Reyn E.S. Use of infrared thermography in ophthalmology. The Russian Annals of Ophthalmology, 2017, no. 6, pp. 99–104. DOI: 10.17116/oftalma2017133699-104
  30. Topalidou A., Ali M., Sekulic S., Downe S. Thermal imaging applications in neonatal care: A scoping review. BMC Pregnancy Childbirth. BMC Pregnancy and Childbirth, 2019, vol. 19, no. 1. DOI: 10.1186/s12884-019-2533-y
  31. Tavares I.M., Vardasca R., Cera N., Perera R., Nimbi F.M., Lisy D., Janssen E., Nobre P.J. A review of infra-red thermography as applied to human sexual psychophysiology. Int. J. Psychophysiol, 2018, vol. 133, pp. 28–40. DOI: 10.1016/j.ijpsycho.2018.09.001
  32. Oliveira A.L., Moore Z., Connor T.O., Patton D. Accuracy of ultrasound, thermography and subepidermal moisture in predicting pressure ulcers: A systematic review. J. Wound Care, 2017, vol. 26, no. 5, pp. 199–215.
  33. Dibai-Filho A.V., Guirro R.R.D.J. Evaluation of myofascial trigger points using infrared thermography: A critical review of the literature. J. Manipulative Physiol. Ther. National University of Health Sciences, 2015, vol. 38, no. 1, pp. 86–92. DOI: 10.1016/j.jmpt.2014.10.010
  34. Solivetti F.M., Desiderio F., Guerrisi A., Bonadies A., Maini C.U.M., Fillippo Di S., D’Orazi V., Sperduti I., Carlo Di S. HF ultrasound vs PET-CT and telethermography in the diagnosis of in-Transit metastases from melanoma: A prospective study and review of the literature. J. Exp. Clin. Cancer Res., 2014, vol. 33, no.1, pp. 1–7.
  35. Kadado A.J., Akar J.G., Hummel J.P. Luminal esophageal temperature monitoring to reduce esophageal thermal injury during catheter ablation for atrial fibrillation: A review. Trends Cardiovasc. Med., 2019, vol. 29, no. 5, pp. 264–271. DOI: 10.1016/j.tcm.2018.09.010
  36. Raiko J., Koskensalo K., Sainio T. Imaging-based internal body temperature measurements: The journal Temperature toolbox. Temperature, 2020, vol. 7, no. 4, pp. 363–388. DOI: 10.1080/23328940.2020.1769006
  37. Antink C.H., Lypa S., Paul M., Yu X. A Broader Look: Camera-Based Vital Sign Estimation across the Spectrum. Yearb. Med. Inform., 2019, vol. 28, no. 1, pp. 102–114. DOI: 10.1055/s-0039-1677914
  38. Zhorina L.V. Methods of noninvasive measuring of internal temperature of body. Tambov Univ. Reports. Ser. Nat. Tech. Sci., 2017, vol. 22, no. 2, pp. 464–470. DOI: 10.20310/1810-0198-2017-22-2-464-470
  39. Drakopoulou M., Moldovan C., Toutouzas K., Tousoulis D. The role of microwave radiometry in carotid artery disease. Diagnostic and clinical prospective. Curr. Opin. Pharmacol., 2018, vol. 39, pp. 99–104. DOI: 10.1016/j.coph.2018.02.008
  40. Snow B.W. New noninvasive methods to diagnose vesicoureteral reflux. Curr. Opin. Urol., 2011, vol. 21, no. 4, pp. 339–342. DOI:10.1097/MOU.0b013e328346ae60
  41. Zhou Y. Noninvasive Thermometry in High-Intensity Focused Ultrasound Ablation. Ultrasound Quarterly, 2017, vol. 33, no. 4, pp. 253–260. DOI: 10.1097/RUQ.0000000000000300
  42. Liu S., Zhang R., Zheng Z., Zheng Y. Electromagnetic—Acoustic sensing for biomedical applications. Sensors, 2018, vol. 18, no. 10, pp. 3203-3203. DOI: 10.3390/s18103203
  43. Fani F. et al. CT-based thermometry: An overview. Int. J. Hyperth, 2014, vol. 30, no. 4, pp. 219–227. DOI: 10.3109/ 02656736.2014.922221
  44. Odeen H., Parker D.L. Magnetic resonance thermometry and its biological applications — Physical principles and practical considerations. Prog Nucl Magn Reson Spectrosc, 2019, vol. 110, pp. 34–61. DOI: 10.1016/j.pnmrs.2019.01.003
  45. Zaltieri M., Massaroni C., Canti F.M., Schena E. Techniques for temperature monitoring of myocardial tissue undergoing radiofrequency ablation treatments: An overview. Sensors, 2021. vol. 21, no. 4, pp. 1–27. DOI: 10.3390/s21041453
  46. LaRiviere M.J., Gross R.E. Stereotactic Laser Ablation for Medically Intractable Epilepsy: The Next Generation of Minimally Invasive Epilepsy Surgery. Frontiers in Surgery, 2016, vol. 3(64). DOI: 10.3389/fsurg.2016.00064
  47. Muller B.G., Bos Willemien van den, Pinto Peter A., Rosette Jean J de la. Imaging modalities in focal therapy: Patient selection, treatment guidance, and follow-up. Curr. Opin. Urol., 2014, vol. 24, no. 3, pp. 218–224. DOI: 10.1097/MOU.0000000000000041
  48. Patel N.V., Mian M., Stafford P.T., Nahed B.V., Willie J.T., Gross R.E., Danish S.F. Laser interstitial thermal therapy technology, physics of magnetic resonance imaging thermometry, and technical considerations for proper catheter placement during magnetic resonance imaging—Guided laser interstitial thermal therapy. Clin. Neurosurg, 2016, vol. 79, no. 6. pp. S8—S16. DOI: 10.1227/NEU.0000000000001440
  49. Zhu L., Altman M.B., Laszlo A., Straude W., Zoberi I., Hallahan D.E., Chen H. Ultrasound Hyperthermia Technology for Radiosensitization. Ultrasound Med. Biol., 2019, vol. 45, no. 5, pp. 1025–1043. DOI: 10.1016/j.ultrasmedbio. 2018.12.007
  50. Diaz R., Ivan M.E., Hanft S., Vanni S., Manzano C., Jagid J., Komotar R.T. Laser interstitial thermal therapy: Lighting the way to a new treatment option in neurosurgery. Clin. Neurosurg., 2016, vol. 79, no. 6. pp. S3—S7.
  51. Feng Y., Fuentes D. Model-based planning and real-time predictive control for laser-induced thermal therapy. Int. J. Hyperth., 2011, vol. 27, no. 8, pp. 751–761. DOI: 10.3109/ 02656736.2011.611962
  52. Datta N.R., Ordóñez S. Gómez, Gaipl U.S., Paulides M.M., Crezee H., Gellermann J., Marder D., Puric E., Bodis S. Local hyperthermia combined with radiotherapy and-/or chemotherapy: Recent advances and promises for the future. Cancer Treat. Rev., 2015, vol. 41, no. 9, pp. 742–753. DOI: 10.1016/j.ctrv.2015.05.009
  53. Kuroda K. MR techniques for guiding high-intensity focused ultrasound (HIFU) treatments. J. Magn. Reson. Imaging, 2018, vol. 47, no. 2, pp. 316–331. DOI: 10.1002/jmri.25770
  54. Fischer L.H., Harms G.S., Wolfbeis O.S. Upconverting nanoparticles for nanoscale thermometry. Angewandte Chemie, 2011, vol. 50, no. 20, pp. 4546–4551. DOI: 10.1002/anie.201006835
  55. Qiao J., Mu X., Qi L. Construction of fluorescent polymeric nano-thermometers for intracellular temperature imaging: A review. Biosens. Bioelectron., 2016, vol. 85, pp. 403–413. DOI: 10.1016/j.bios.2016.04.070
  56. Schirhagl R.,Chang K., Loretz M., Degen C. Nitrogen-vacancy centers in diamond: Nanoscale sensors for physics and biology. Annu. Rev. Phys. Chem., 2014, vol. 65, pp. 83–105. DOI: 10.1146/annurev-physchem-040513-103659
  57. Zhou H., Sharma M., Berezin O., Zuckerman D., Berezin M.Y. Nanothermometry: From Microscopy to Thermal Treatments. Chemphyschem, 2016, vol. 17, no. 1, pp. 27–36. DOI: 10.1002/cphc.201500753
  58. Rocha J., Brites C.D.S., Carlos L.D. Lanthanide Organic Framework Luminescent Thermometers. Chemistry, 2016, vol. 22, no. 42, pp. 14782–14795. DOI: 10.1002/chem.201600860
  59. Bednarkiewicz A., Morciniak L., Carlos L.D., Jaque D. Standardizing luminescence nanothermometry for bio-medical applications. Nanoscale, 2020, vol. 12, no. 27, pp. 14405–14421. DOI: 10.1039/D0NR03568H
  60. Zhou J., Rosal B.D., Jaque D., Uchiyana S., Jin D. Advances and challenges for fluorescence nanothermometry. Nat. Methods. Springer US, 2020, vol. 17, no. 10, pp. 967–980. DOI: 10.1038/s41592-020-0957-y
  61. Suzuki M., Plakhotnik T. The challenge of intracellular temperature. Biophys. Rev., 2020, vol. 12, pp. 593–600. DOI: 10.1007/s12551-020-00683-8
  62. Kenny G.P., Jay O. Thermometry, calorimetry, and mean body temperature during heat stress. Compr. Physiol., 2013, vol. 3, no. 4, pp. 1689–1719. DOI: 10.1002/cphy.c130011
  63. Bach A.J.E., Stewart I.B., Minett G. M., Costell J.T. Does the technique employed for skin temperature assessment alter outcomes? A systematic review. Physiol. Meas, 2015, vol. 36, no. 9 pp. 27‒51. DOI: R27—R51. 10.1088/0967-3334/36/9/R27
  64. Sedaghat F., Tuncali K. Enabling Technology for MRI-Guided Intervention. Top. Magn. Reson. Imaging., 2018, vol. 27, no. 1 pp. 5–8. DOI: 10.1097/RMR.0000000000000148
  65. Saccomandi P., Schena E., Silvestri S. Techniques for temperature monitoring during laser-induced thermotherapy: An overview. Int. J. Hyperth., 2013, vol. 29, no. 7, pp. 609–619. DOI: 10.3109/02656736.2013.832411
  66. Neves E.B., Vilaca-Alves J., Antunes N., Felisberto I.M.V., Rosa C., Reis V.M. Different responses of the skin temperature to physical exercise: Systematic review. Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS, 2015, Novem. 2015, pp. 1307–1310.
  67. Moreira D.G., Costello J.T., Brito C.J., Adamczyk J.G., Ammer K., Bach A.J.E., Costa C.M.A., Eglin C., Fernandes A.A., Fernández-Cuevas I., Ferreira J.J.A., Formenti D., Fournet D., Havenith G., Howell K., Jung A., Kenny G.P., Kolosovas-Machuca E.S., Maley M.J., Merla A., Pascoe D.D., Quesada J.I.P., Schwartz R.G., Seixas A.R.D., Selfe J., Vainer B.G., Sillero-Quintana M. Thermographic imaging in sports and exercise medicine: A Delphi study and consensus statement on the measurement of human skin temperature. J. Therm. Biol., 2017, vol. 69, pp. 155–162. DOI: 10.1016/j.jtherbio.2017.07.006
  68. Daanen H., Bose-O’Reilly S., Brearley M., Flouris D.A., Gerrett N.M., Huynen M., Jones H.M., Lee J.K.W., Morris N., Norton I., Nybo L., Oppermann E., Shumake-Guillemot J., Van den Hazel P. COVID-19 and thermoregulation-related problems: Practical recommendations. Temperature. Taylor & Francis, 2021, vol. 8, no. 1, pp. 1–11. DOI: 10.1080/23328940.2020.1790971
  69. Mazerolle S.M., Ganio M.S., Casa D.J., Vingren J., Klau J. Is oral temperature an accurate measurement of deep body temperature? A systematic review. J. Athl. Train, 2011, vol. 46, no. 5, pp. 566–573.
  70. Geijer H., Udumyan R., Lohse G., Nilsagard Y. Temperature measurements with a temporal scanner: Systematic review and meta-analysis, BMJ Open.,2016, Vol. 6, no 3, DOI: 10.1136/bmjopen-2015-009509
  71. Hughes C., Voros S., Moreau-Gaudry A. Unintended Consequences of Sensor, Signal, and Imaging Informatics:
  72. New Problems and New Solutions. Yearb. Med. Inform., 2016, no. 1, pp. 159–162. DOI: 10.15265/IY-2016-053
  73. Blazek V., Blanik N., Blazer C. R., Paula M., Pereira C., Koeny M., Venema B., Leonhard S. Active and Passive Optical Imaging Modality for Unobtrusive Cardiorespiratory Monitoring and Facial Expression Assessment. Anesth. Analg., 2017, vol. 124, no. 1, pp. 104–119. DOI: 10.1213/ ANE.0000000000001388
  74. Taylor W., Abbasi Q.H., Dashhtipour K., Arsari S., Shah S.A., Khalid A., Imran M.A. A review of the state of the art in non-contact sensing for covid-19. Sensors, 2020, vol. 20, no. 19, pp. 1–19. DOI: 10.3390/s20195665
  75. Sousa P., Felizardo V., Olivera D., Couto R., Garcia N.M. A review of thermal methods and technologies for diabetic foot assessment. Expert Rev. Med. Devices, 2015, vol. 12, no. 4, pp. 439–448. DOI: 10.1586/17434440.2015.1032251
  76. Adam M., Ng E.Y.K., Tan J.H., Heng M.L., Tong J.W.K., Acharya U.R. Computer aided diagnosis of diabetic foot using infrared thermography: A review. Comput. Biol. Med., 2017, vol. 91, pp. 326–336. DOI: 10.1016/j.compbiomed.2017.10.030
  77. Ring E.F.J., Ammer K. Infrared thermal imaging in medicine. Physiol. Meas, 2012, vol. 33, no. 3, pp. 33‒46. DOI: 10.1088/0967-3334/33/3/R33
  78. Machoy M., Szyszka-Sommerfeld L., Rahnama M., Koprowski R., Wilczynski S., Wozniak K. Diagnosis of Temporomandibular Disorders Using Thermovision Imaging. Pain Res. Manag., 2020, vol. 2020, DOI: 10.1155/2020/5481365
  79. Naziyok T.P., Zeleke A.A., Röhrig R. Contactless patient monitoring for general wards: A systematic technology review. Stud. Health Technol. Inform., 2017, vol. 228, pp. 707–711. DOI: 10.3233/978-1-61499-678-1-707
  80. Magalhaes C., Vardasca R., Mendes J. Recent use of medical infrared thermography in skin neoplasms // Ski. Res. Technol. 2018. vol. 24, no. 4. pp. 587–591. DOI: 10.1111/srt.12469
  81. Herrick A.L., Murray A. The role of capillaroscopy and thermography in the assessment and management of Raynaud’s phenomenon. Autoimmun. Rev., 2018, vol. 17, no. 5, pp. 465–472. DOI: 10.1016/j.autrev.2017.11.036
  82. Schnelldorfer T., Jenkins R.L., Birkett D.H., Georgakoudi I. From shadow to light: Visualization of extrahepatic bile ducts using image-enhanced laparoscopy. Surg. Innov., 2015, vol. 22, no. 2, pp. 194–200. DOI: 10.1177/ 1553350614531661
  83. Mehmood N., Hariz A., Fitridge R., Voelcker N.H. Applications of modern sensors and wireless technology in effective wound management. J. Biomed. Mater. Res. — Part B Appl. Biomater., 2014, vol. 102, no. 4, pp. 885–895. DOI: 10.1002/jbm.b.33063
  84. Oey C.H.W., Moh S. A survey on temperature-aware routing protocols in Wireless Body Sensor Network. Sensors, 2013, vol. 13, no. 8, pp. 9860–9877. DOI: 10.3390/s130809860

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI