Dynamic thermoelasticity in the problem of heat shock based on the general energy equation


Аuthors

Kartashov E. M.*, Nenakhov E. V.**

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

*e-mail: kartashov@mitht.ru
**e-mail: newnew94@mail.ru

Abstract

The problem of heat shock was studied for the case of the solid body surface sharp cooling in terms of dynamic thermoelasticity based on the generalized energy equation, namely the equation of non-stationary heat conduction of a hyperbolic type with allowance for the finite velocity of heat propagation. Various modes of sudden cooling, such as temperature mode, thermal mode, cooling by medium, resulting in tensile stresses in the inner sections of the solid body, in contrast to the similar cases of sudden heating creating compression stresses were studied. Exact analytical solutions of a series of boundary-value problems of dynamic thermoelasticity were obtained, numerical experiments were performed, and their features were described. It is shown, that two wave fronts are formed in the solid – the elastic wave front, and the thermal wave front. Depending on the ratio of their propagation rates, the elastic wave either precedes the thermal wave, or lags behind it. A comparison with the classical case of dynamic thermoelasticity while cooling is made. It is shown, that in the latter case, the presence of finite heat transfer from the surface of a solid body leads to the absence of thermal stress ruptures. At the same time, for a generalized dynamic problem the nature of the stresses remains the same as for an infinitely large value of the heat transfer coefficient (which means the existence of a boundary condition of the first kind, i.e. temperature cooling).With this, the accounting for the thermal inertia in the hyperbolic type heat equation and in the boundary condition of the third kind leads to the dynamic temperature stresses decrease, but with heat transfer on the solid surface increasing the dynamic temperature stresses increase. This allowed determining the most dangerous cooling mode, which was the temperature cooling.

Keywords:

heatstroke, the final velocity of heat propagation, dynamic thermoelastic stresses, tensile stress

References

  1. Lykov A.V. Teoriya teploprovodnosti [Theory of heat conductivity]. Moscow: Vysshaya shkola, 1967. 600 p. In Russ.

  2. Kartashov E.M. Аnaliticheskie metody v teorii teploprovodnosti tverdykh tel [Analytical methods in the theory of the thermal conductivity of solids]. Moscow: Vysshaya shkola, 2001. 552 p. In Russ.

  3. Kartashov E.M., Kudinov V.V. Аnaliticheskie metody teorii teploprovodnosti i ee prilozhenij [Analytical methods of the theory of heat conduction and its applications]. Мoscow: URSS, 2017. 1080 p. In Russ.

  4. Podstrigach Ya.S., Kolyano Yu.M. Obobshhennaya termomekhanika [Generalized thermomechanics]. Kiev. Naukova Dumka, 1978. 310 p. In Russ.

  5. Novatsky V. Dinamicheskie zadachi termouprugosti [Dynamic problems of thermoelasticity]. Мoscow: Mir, 1970. 256 p. In Russ.

  6. Shashkov A.G., Bubnov V.A., Yanovsky S.Yu. Volnovye yavleniya teploprovodnosti. [Heat conduction wave phenomena]. Minsk: Nauka i Tekhnika, 1993. 275 p. In Russ.

  7. Zarubin V.S., Kuvyrkin G.K. Matematicheskie modeli termomekhaniki [Mathematical models of thermomechanics]. Moscow: Fizmatlit, 2002. 168 p. In Russ.

  8. Kartashov E.M., Bartenev G.M. Dinamicheskie effekty v tverdykh telakh v usloviyakh vzaimodejstviya s intensivnymi potokami energii [Dynamic effects in solids under conditions of interaction with intense energy flowsх]. Itogi nauki i tekhniki. Ser. Khimiya i tekhnologiya vysokomolekulyarnykh soedinenij – Itogi nauki i tekhniki. Ser. Chemistry and technology of high-molecular compounds, Moscow: VINITI, 1988, vol. 25, pp. 3–88. In Russ.

  9. Kartashov E.M., Parton V.Z. Dinamicheskaya termouprugost’ i problemy termicheskogo udara [Dynamic thermoelasticity and problems of thermal shock] // Itogi nauki i tekhniki. Ser. Mekhanika deformiruemogo tverdogo tela – Itogi nauki i tekhniki. Ser. Mechanics of a deformable solid, Moscow: VINITI, 1991, vol. 22, pp. 55–127. In Russ.

  10. Kartashov E.M., Kudinov V.А. Аnaliticheskaya teoriya teploprovodnosti i prikladnoj termouprugosti [Analytical theory of heat conduction and thermoelasticity]. Moscow: URRS, 2013. 656 p. In Russ.

  11. Formalev V.F. Teploperenos v anizotropnykh tverdykh telakh [Heat transfer in anisotropic solids]. Moscow: Fizmatlit.2015. 280 p. In Russ.

  12. Baumejster K. Khamill T. Giperbolicheskoe uravnenie teploprovodnosti. Reshenie zadachi o polubeskonechnom tele [Hyperbolic equation of heat conductivity. The solution of the problem of a semi-infinite body]. Teploperedacha – Heat transfer, 1969, no. 4, pp. 112–119. In Russ.

  13. Kartashov E.M. Аnaliticheskie resheniya giperbolicheskikh modelej teploprovodnosti [Analytical solutions of hyperbolic heat conduction models] // Inzhenerno-fizicheskij zhurnal – Engineering and physics journal, 2014, vol. 87, no. 5, pp.1072–1082. In Russ.

  14. Kartashov E.M. Novye sootnosheniya dlya analiticheskikh reshenij giperbolicheskikh modelej perenosa [New relations for the analytic solution of the hyperbolic transport models]. Izvestiya RАN, Ehnergetika – Proceedings of the Russian Academy of Sciences. Power Engineering, 2015, no. 4, pp. 38–48. In Russ.

  15. Kartashov E.M., Antonova I.V. Giperbolicheskie modeli nestatsionarnoj teploprovodnosti [Hyperbolic model of non-stationary thermal conductivity]. Tonkie khimicheskie tekhnologii – Fine Chemical Technologies, 2016 vol. 11, no. 2, pp. 74–80. In Russ.

  16. Bruno A. B. Weiner J.H. Theory of Thermal Stresses. John Wiley, New York (Chapman and Hall, London), 1960. 586 p.

  17. Mura K., Kumar S., Vedavars A., Mjallemi M.K. Experimental evidence of hyperbolic heat conduction in processed meat. Heat Transf. ASME, 1995, vol. 117, no. 3, pp. 568–573.

  18. Kirsanov Yu.A., Kirsanov A.Yu. Ob izmerenii vremeni teplovoj relaksatsii tverdykh tel [On the measurement of the thermal relaxation time of solids]. Izvestiya RАN, Ehnergetika – Proceedings of the Russian Academy of Sciences. Power Engineering, 2015, no. 1, pp. 113–122. In Russ.

  19. Strigunova A.Yu., Kartashov E.M. Teplovoj udar i dinamicheskaya termouprugost’ [Thermal shock and dynamic thermoelasticity]. Tonkie khimicheskie tekhnologii – Fine Chemical Technologies, 2016 vol. 11, no. 1, pp. 67–71. In Russ.

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI