Application of supersonic machine-free energy separation method in pressure reduction of natural gas


Аuthors

Popovich S. S.*, Zditovets A. G.*, Kiselev N. A.*, Makarova M. S.**

Institute of Mechanics Lomonosov Moscow State University, 1, Michurinsky prospect, Moscow, 119192, Russia

*e-mail: pss@imec.msu.ru
**e-mail: mariia.makarova@gmail.com

Abstract

There are more than 4200 gas distribution stations operating in Russian Federation. Gas pressure reduction at the gas distribution station from 5–12 MPa in the main pipelines to 0.6–1.2 MPa in cities leads to a significant gas temperature drop due to the throttle effect. In case of absence of natural gas preheating prior to the throttling device, the pressure drop in it leads to condensate dropout in the form of crystalline hydrates, liquid plugs formation, frosting-up of adjusting valves, check valves and instruments. The article presents an overview of the existing and promising ways of solving the problem of hydrate formation at gas distribution stations. Such methods as fire heating, inhibitors application, turbine expanders, methods of machine-free energy separation based on vortex and resonant tubes are considered. The main advantages and disadvantages of these methods are noted. The idea of implementing the method of fire-free heating during natural gas pressure reduction based on a supersonic machine-free energy separation is presented. The device principle of operation is based on the thermal interaction of subsonic and supersonic flows through a heat-conducting partition. The gas fed to the first channel passes through a supersonic nozzle, loses total pressure during acceleration, moving through the supersonic channel and decelerating in the diffuser, being heated herewith due to the heat exchange with subsonic flow through the wall. The gas, supplied to the second channel, practically retains the total pressure, and being cooled due to heat transfer to the supersonic flow through the partition wall. The heated gas with reduced pressure is directed to the consumer, while cooled compressed gas goes for further transportation. The article notes the main gas parameters, shock waves and components condensation impact on the effectiveness of the proposed device. A comparison of various gas pressure reduction techniques by the weight coefficients method according to the proposed criteria, such as maintenance complexity, the technique reliability, operation safety, design complexity, useable by-product availability and the degree of the technique availability, was made. The abandonment of the fire heating will allow simplify and safe the gas distribution station operation, improve ecological figures and save natural fuel gas.

Keywords:

hydrate formation, throttling, gas distribution station, machine-free energy separation, supersonic flow, adiabatic wall temperature, temperature recovery factor

References

  1. Itogi VII Mezhdunarodnoj nauchno-prakticheskoj konferentsii “Gazoraspredelitel'nye stantsii i sistemy gazosnabzheniya”[ Results of the VII International Scientific and Practical Conference "Gas distribution stations and gas supply systems"]. Territoriya Neftegaz – Oil and gas territory, 2016, no. 2, pp. 28–31. In Russ.

  2. Ionin A.A. Gazosnabzhenie [Gas supply]. Moscow: Stroyizdat, 1989. 439 p. In Russ.

  3. Carroll J. Natural Gas Hydrates. A Guide for Engineers. Gulf Professional Publishing, 2009. 288 p.

  4. STO GAZPROM 2-3.5-051-2006. Normy tekhnologicheskogo proektirovaniya. Magistral'nye truboprovody. Chast' 1. Gazoprovody. Razdel 5. Gazoraspredelitel'nye i gazoizmeritel'nye stantsii. [STO GAZPROM 2-3.5-051-2006. Standards of technological design Main pipelines. Part 1. Gas pipelines. Section 5. Gas distribution and gas measuring stations]. 2006. 196 p. In Russ.

  5. Leontiev A.I. Sposob temperaturnoj stratifikatsii gaza i ustrojstvo dlya ego osushhestvleniya (Truba Leont'eva) [Gas temperature stratification method and device for its implementation (Leontiev Tube)]. Patent RF, no. 2106581, 1996.

  6. Leont'ev A.I. Gas-dynamic method of energy separation of gas flows. High Temperature, 1997, vol. 35, no. 1, pp. 155–157.

  7. Musakaev N.G., Urazov R.R. Preventivnye metody bor'by s gidratoobrazovaniem v truboprovodakh [Methods to prevent hydrate formation in pipelines]. Neft' i gaz – Oil and gas, 2006, no. 1, pp. 50–56. In Russ.

  8. Danilov A.A., Petrov A.I. Gazoraspredelitel'nye stantsii [Gas distribution stations]. St. Petersburg: Nedra, 1997. 240 p. In Russ.

  9. Danilov A.A. Аvtomatizirovannye gazoraspredelitel'nye stantsii: Spravochnik [Automated gas distribution stations: Handbook]. St. Petersburg: Khimizdat, 2004. 544 p. In Russ.

  10. Dobriansky V.L. Sposob predotvrashheniya gidratoobrazovaniya v prirodnom gaze i ustrojstvo dlya ego osushhestvleniya [The way to prevent hydrate formation in natural gas and the device for its implementation]. Patent RF, no. 2251644, 2003.

  11. Serazetdinov B.F., Serazetdinov F.Sh., Tonkonog V.G. Tekhnologicheskij nagrevatel' [Technological heater]. Patent RF, no. 2467260, 2011.

  12. Kotov Yu.I., Danilov A.N. Ustrojstvo predotvrashheniya gidratoobrazovaniya [Device for preventing hydrate formation]. Patent RF, no. 2246701, 2002.

  13. Belyaev A.Yu., Vilensky L.M. Sistema podachi metanola v truboprovod [The methanol supply system in the pipeline]. Patent RF, no. 2413900, 2009.

  14. Shpak V.N. Gazoraspredelitel'naya stantsiya s ehnergeticheskoj ustanovkoj [Gas distribution station with a power plant]. Patent RF, no. 2009389, 1992.

  15. Kulichikhin V.V. Opyt ekspluatatsii detander-generatornykh agregatov na TETS Mosehnergo. Istoricheskij obzor [Operating experience of the expander-generator units at the Mosenergo thermal power plant. Historical review]. Nadezhnost' i bezopasnost' ehnergetiki – Reliability and safety of power engineering, 2017, vol. 10, no. 2, pp. 159–166. In Russ.

  16. Stepanets A.A., Goryunov I.T., Guskov Yu.L. Energosberegayushhie kompleksy, osnovannye na ispol'zovanii perepada davleniya na gazoprovodakh [Energy-saving complexes based on the use of pressure drop on gas pipelines]. Teploehnergetika – Thermal engineering, 1995, no. 6, pp. 33–35. In Russ.

  17. Gafurov A.M. Sposob raboty gazoraspredelitel'noj stantsii [The method of operation of the gas distribution station]. Patent RF, no. 2525041, 2013.

  18. Kulichikhin V.V., Lazareva O.O. Ispol'zovanie izbytochnogo davleniya prirodnogo gaza na promyshlennykh predpriyatiyakh [The use of overpressure of natural gas in industrial enterprises]. Nadezhnost' i bezopasnost' ehnergetiki – Reliability and safety of power engineering, 2010, no. 2 (9), pp. 48–54. In Russ.

  19. Leont'ev A.I. Gas-dynamic methods of temperature stratification (a Review). Fluid Dynamics. 2002, vol. 37, no. 4, pp. 512–529.

  20. Burtsev S.A., Leont'ev A.I. Study of the influence of dissipative effects on the temperature stratification in gas flows (Review). High Temperature, 2014, vol. 52, no. 2, pp. 297–307.

  21. Piralishvili Sh.A. Vikhrevoj effekt (fizicheskoe yavlenie, eksperiment, teoreticheskoe modelirovanie) [Vortex effect (physical phenomenon, experiment, theoretical modeling)]. Moscow: Nauchtekhlititizdat, 2012. 342 p. In Russ.

  22. Eiamsa-ard S., Promvonge P. Review of Ranque–Hilsch effects in vortex tubes. Renewable and Sustainable Energy Reviews, 2008, vol. 12, pp. 1822–1842.

  23. Subudhi S., Sen M. Review of Ranque–Hilsch vortex tube experiments using air. Renewable and Sustainable Energy Reviews, 2015, vol. 52, pp. 172–178.

  24. Boriskin V.V., Danilov K.L., Lavrik N.L., Maksimenko S.V., Tishechkin N.N., Fokin G.A. Sposob redutsirovaniya davleniya prirodnogo gaza [Method of reducing the natural gas pressure]. Patent RF, no. 2413901, 2009.

  25. Boriskin V.V., Lavrik N.L., Plaksin L.L., Fokin G.A., Fursenko S.A. Sposob redutsirovaniya davleniya prirodnogo gaza [Method of reducing the natural gas pressure]. Patent RF, no. 2309322, 2005.

  26. Boriskin V.V., Glazunov V.D., Kabanyuk A.E., Loginov D.N., Nelen A.N., Serdyukov S.G., Streltsov Yu.M., Khodorkov I.L. Sposob redutsirovaniya davleniya prirodnogo gaza [Method of reducing the natural gas pressure]. Patent RF, no. 2180420, 2000.

  27. Murugappan S., Gutmark E. Parametric study of the Hartmann Sprenger tube. Experiments in Fluids, 2005, vol. 38, iss. 6, pp. 813.

  28. Raman G., Srinivasan K. The powered resonance tube: From Hartmann’s discovery to current active flow control ap plications. Progress in Aerospace Sciences, 2009, vol. 45, pp. 97–123.

  29. Bukharitsin P.I., Bezzubikov L.G., Vetrova A.A. Sposob redutsirovaniya davleniya prirodnogo gaza [Method of reducing the natural gas pressure]. Patent RF, no. 2472062, 2010.

  30. Burtsev S.A. Metodika rascheta ustrojstv gazodinamicheskoj temperaturnoj stratifikatsii pri techenii real'nogo gaza [Analysis technique for devices for gas-dynamic temperature stratification in real gas flow]. Teplovye protsessy v tekhnike – Thermal processes in engineering, 2013, vol. 5, no. 9, pp. 386–390. In Russ.

  31. Vigdorovich I.I., Leont'ev A.I. Theory of the energy separation of a compressible gas flow . Fluid Dynamics, 2010, vol. 45, iss. 3, pp. 434 -440. DOI: 10.1134/S0015462810030105

  32. Azanov G.M., Osiptsov A.N. The efficiency of one method of machineless gasdynamic temperatures tratificationin a gas flow. International Journal of Heat and Mass Transfer, 2017, vol. 106, pp. 1125–1133.

  33. Vigdorovich I.I., Leontiev A.I. Energorazdelenie gazov s malymi i bol'shimi chislami Prandtlya [Energy separation of gases with high and low Prandtl numbers]. Izvestiya RАN. Mekhanika zhidkosti i gaza – Proceedings of the Russian Academy of Sciences. Fluid dynamics, 2013, no. 6, pp. 117–134. In Russ.

  34. Zditovets A.G., Titov A.A. Eksperimental'noe issledovanie gazodinamicheskogo metoda bezmashinnogo energorazdeleniya vozdushnykh potokov [Experimental study of a gas-dynamic method for an air stream energy separation]. Teplovye protsessy v tekhnike – Thermal processes in engineering, 2013, vol. 5, no. 9, pp. 391–397. In Russ.

  35. Zditovets A.G., Vinogradov Yu.A., Strongin M.M. Eksperimental'noe issledovanie bezmashinnogo energorazdeleniya vozdushnykh potokov v trube Leont'eva [Experimental investigation of air flow energy separation in Leontiev tube]. Teplovye protsessy v tekhnike – Thermal processes in engineering, 2015, vol. 7, no. 9, pp. 397–404. In Russ.

  36. Popovich S.S. Eksperimental'noe issledovanie vliyaniya udarnykh voln na ehffekt bezmashinnogo energorazdeleniya gazovykh potokov [Experimental research of machineless energy separation effect influenced by shock waves]. Nаukа i obrаzovаnie: nаuchnoe izdаnie MGTU im. N.E. Bаumаnа – Science and education: Scientific edition of  Bauman Moscow State Technical University, 2016, no. 3, pp. 64–80. In Russ.

  37. Popovich S.S. Vliyanie udarnykh voln na effekt bezmashinnogo energorazdeleniya. Diss. kand. tekhn. nauk [Shock wave influence on the effect of the machine-free energy separation. Diss. cand. tech. sci.]. Moscow, 2016. 172 p.

  38. Leontiev A.I., Zditovets A.G., Vinogradov Y.A., Strongin M.M., Kiselev N.A. Experimentalinvestigation of the machine-free method of temperature separation of air flows based on the energy separation effect in a compressible boundary layer. Experimental Thermal and Fluid Science, 2017, no. 88, pp. 202–219.

  39. Burtsev S.A., Viezel Y.M., Leontiev A.I., Chizhikov Yu.V. Sposob reguliruemogo bespodogrevnogo redutsirovaniya magistral'nogo prirodnogo gaza i ustrojstvo dlya ego osushhestvleniya [Method for controlled non-heating reduction of the main pipeline natural gas and device for its implementation]. Patent RF, no. 2162190, 1999.

  40. Eckert E.R.G. Energy separation in fluid streams. Int. Comm. Heat mass transfer, 1986, vol. 13, pp. 127–143.

  41. Schlichting H. Boundary layer theory. McGraw-Hill, 1968. 747 p.

  42. Volchkov E.P., Makarov M.S. Gazodinamicheskaya temperaturnaya stratifikatsiya v sverkhzvukovom potoke [Gas-dynamic temperature stratification in a supersonic flow]. Izvestiya RАN. Energetika – Proceedings of the Russian Academy of Sciences. Power Engineering, 2006, no. 2, pp. 19-31. In Russ.

  43. Makarov M.S., Makarova S.N. Efficiency of energy separation at compressible gas flow in a planar duct. Thermophysics and Aeromechanics, 2013, vol. 20, no. 6, pp. 757-767. DOI: 10.1134/S0869864313060139

  44. Burtsev S.A. Exploring ways to improve efficiency of gasdynamic energy separation. High Temperature, 2014, vol. 52, no. 1, pp. 12-18. DOI: 10.1134/S0018151X14010064

  45. Kutateladze S.S., Leontiev A.I. Heat Transfer, Mass Transfer, and Friction in Turbulent Boundary Layers. New York: Taylor and Francis, 1990. 325 p.

  46. Shapiro A.H. The dynamics and thermodynamics of compressible fluid flow. V. I. NewYork: Ronald Press, 1954. 647 p.

  47. Leontiev A.I., Osiptsov A.N., Rybdylova O.D. The boundary layer on a flat plate in a supersonic gas-droplet flow: Influence of evaporating droplets on the temperature of an adiabatic wall. High Temperature, 2015, vol. 53, no. 6, pp. 865-872. 10.7868/S0040364415060162

  48. Azanov G.M., Osiptsov A.N. The effect of fine evaporating droplets on the adiabatic-wall temperature in a compressible two-phase boundary layer. Fluid Dynamics, 2016, vol. 51, no. 4, pp. 498–506.

  49. Popovich S.S. Eksperimental'noe issledovanie vliyaniya padayushhego skachka uplotneniya na adiabatnuyu temperaturu stenki v sverkhzvukovom potoke szhimaemogo gaza [Experimental study of influence of falling shock wave on adiabatic wall temperature of a supersonic air flow around plane surface]. Teplovye protsessy v tekhnike – Thermal processes in engineering, 2014, vol. 4, no. 4, pp. 98–104. In Russ.

  50. Popovich S.S., Vinogradov Yu.A., Strongin M.M. Eksperimental'noe issledovanie vozmozhnosti intensifikatsii teploobmena v ustrojstve bezmashinnogo energorazdeleniya potokov [Experimental research of the possibility of heat transfer enhancement in gas dynamic energy separation process]. Vestnik SGАU – Vestnik of the Samara State Aerospace University (Vestnik SSAU), 2015, vol. 14, no. 2, pp. 159–169. In Russ. DOI: 10.18287/2412-7329-2015-14-2-159-169

  51. Muschick E., Muller P.H. Metody prinyatiya tekhnicheskikh reshenij [Methods of making technical decisions]. Moscow: Mir, 1990. 208 p. In Russ.

  52. Orlov A.I. Teoriya prinyatiya reshenij. Uchebnoe posobie [Decision making theory. Tutorial]. Moscow: Publisher “Mart”, 2004. 656 p. In Russ.

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI