Hypersonic flow-around of blunted bodies in conditions of Earth and Mars atmosphere. Comparative analysis of mathematical models


Аuthors

Reviznikov D. L.*, Sukharev T. Y.*

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

*e-mail: reviznikov@inbox.ru

Abstract

Flying vehicles movement with hypersonic velocity is accompanied by the variety of interrelated physic-chemical processes occurring in the shock layer. The possibilities of ground-based experimental research are limited by the complexity of real conditions reproduction over all similarity parameters. As applied to the flying vehicle movement in the atmosphere of Mars, erosive impact of the two-phase flow on the flow-around surface should be accounted for. By now, accurate enough algorithms, realized in CDF program codes were developed. However, the full accounting for the variety of physic-chemical processes in the shock layer complicates significantly the computational process. In this regard, the choice of compromise models that provide sufficient accuracy with acceptable computational costs seems to be relevant. In this paper, a comparative analysis of mathematical models of the gaseous medium from the positions of thermal and erosive (for the atmosphere of Mars) impact of a hypersonic flow on a blunt body was performed. Models of chemically non-equilibrium gas and perfect gas with effective adiabatic index are being considered. The heat flux computed by the perfect gas model is close to the heat flux for absolutely catalytic surface in all computed options, remaining slightly higher than this value. The calculating time by chemically non-equilibrium model herewith is several times greater than the similar calculation by the perfect gas model, and this difference grows while approaching the chemical equilibrium conditions due to the rise of chemical kinetics system of equations rigidity. While the perfect gas model gives highly overestimated evaluations in case of significantly non-equilibrium shock layer on the surfaces with low catalytic activity, it is accurate enough as applied to the erosion impact calculation. The paper demonstrates that the difference in determining the particles velocity at the instant of collision with the flow-around surface, calculated by the models of chemically non-equilibrium gas and perfect gas with effective adiabatic index does not exceed 7% in a wide range of dispersed phase range.

The results obtained in computational experiments allow more efficient performing of multivariate analysis and trajectory calculations, which is actual in the design of hypersonic vehicles’ heat-shielding.

Keywords:

hypersonic flow, numerical simulation, Navier-Stokes equations, heat flux, model of chemically non-equilibrium gas, perfect gas model, chemical kinetics, two-phase flow, dusty atmosphere

References

  1. Giperzvukovaya aehrodinamika i teplomassoobmen spuskaemyh kosmicheskih apparatov i planetnyh zondov. Pod red. G.A. Tirskogo. [Hypersonic aerodynamics and heat and mass transfer of descent space vehicles and planetary probes. Edited by G.A. Tirskii]. Moscow, Fizmatlit, 2011, 548 p.
  2. Viviani A., Pezzella G. Aerodynamic and aerothermodynamic analysis of space mission vehicles. Springer International Publishing Switzerland, 2015, 898 p.

  3. Mihatulin D.S., Polezhaev Yu. V., Reviznikov D. L. Teplomassoobmen. Tennohimicheskoe i termoehrozionnoe razrushenie teplovojzashchity [Heat and mass transfer. Thermochemical and thermo erosion destruction of thermal protection]. Moscow, YANUS-K, 2011, 520 p.

  4. Mihatulin D.S., Polezhaev Yu. V., Reviznikov D. L. Investigation of failure of fiberglass plastic under conditions of flight in dusty atmosphere. High Temperature, 2001, vol.39, no. 4, pp.596-603.

  5. Mihatulin D.S., Polezhaev YU. V., Reviznikov D. L. Investigation of failure of carbon heat-shielding material under conditions of flight in dusty atmosphere. High Temperature, 2003, vol. 41. no.I. pp. 88-94.

  6. Surzhikov S. T., Shuvalov M. P. Checking computation data on radiative and convectional heating of next generation spacecraft. High Temperature, 2013, vol. 51, no. 3. pp. 408-420.

  7. Shevelev Yu.D., Syzranova N.G. Vliyanie himicheskih reakcij na teploperedachu v pogranichnom sloe [Influence of chemical reactions on heat transfer in boundary layer]. Fiziko-himicheskaya kinetika v gazovoj dinamike  – Physicochemical kinetics in gas dynamics, 2010, vol. 10. no. 2, pp. 91-126.

  8. Egorov I. V., Nikol’skij B. C. Viscous hypersonic flows for various aerophysical models. Fluid Dynamics, 1996, vol. 31, no. 4, pp. 151-161.

  9. Bykov L. V., Nikitin P. V., Pashkov O.A. Modelirovanie obtekaniya sfericheskogo tela giperzvukovym potokom [Simulation of hypersonic flow around a spherical body]. Teplovye processy v tekhnike – Thermal processes in engineering, 2015, vol. 7, no. 2, pp. 50-56.

  10. Lapin Yu. V. Turbulentnyj pogranichnyj sloj v sverhzvukovyh potokah gaza [Turbulent boundary layer in supersonic gas flows]. Moscow, Nauka, 1982, 312 p.

  11. Gurvich L. V., Vejc I. V., Medvedev V.A., et al. Termodinamicheskie svojstva individual’nyh veshchestv: spravochnoe izdanie, v 4-h tomah [Thermodynamic properties of individual substances: reference book, in 4 volumes]. Moscow, Nauka, 1982.

  12. Park C., Howe J., Jaffe R. Review of chemical-kinetic problems offuture NASA mission, II: Mars entries.J Thermophys. Heat Transfer, 1994, vol. 8, no. I, pp. 9-23.

  13. WidhopfG.F., Wang J.C. T. A TVD finite-volume technique for nonequilibrium chemically reacting flows. AIAA Paper, 1988, no. 88-2711.

  14. Henderson C.B. Drag coefficients of spheres in continuum and rarefied flows. AIAA Journal, 1976, vol. 14, no. 6, pp. 707- 708.

  15. Reviznikov D.L., Sposobin A. V. Chislennoe modelirovanie vozdejstviya dispersnoj fazy na poverhnost’ zatuplennogo tela v sverhzvukovom zapylennom potoke [Numerical simulation of the solid phase impact on the blunt body surface in supersonic dusty flow]. Matematicheskoe modelirovanie – Mathematical modeling, 2007, vol. 19,no.ll,pp. 101-111.

  16. Ershova T. V., Mikhatulin D.S., Reviznikov D. L., Sposobin A. V., Vinnikov V. V. Numerical simulation of heat and mass transfer between heterogeneous flow and an obstacle. Computational Thermal Sciences, 2011, vol. 3, no. 1, pp. 15-30.

  17. ReviznikovD.L., SposobinA.V, SuharevT.Yu. Nu merical simulation of the flow around a blunt body in supersonic polydisperse stream. High Temperature, 2017, vol. 55,no.3,pp.400-406.

  18. Wood W.A., Eberhardt S. Dual-code solution strategy for chemically-reacting hypersonic flows. AIAA Paper, 1995, no. 95-0158.

  19. Saharov V.I., Tirskij G.A. Model’ chastichnogo himi cheskogo ravnovesiya dlya resheniya zadach giperzvukovogo obtekaniya tel vyazkim gazom. Ispol’zovanie modeli chastichnogo himicheskogo ravnovesiya v marsianskoj atmosphere. V kn. Giperzvukovaya aehrodinamika i teplomassoobmen spuskaemyh kosmicheskih apparatov i planetnyh zondov [Model of partial chemical equilibrium for solving problems of hypersonic flow of viscous gas around bodies. Using a model of partial chemical equilibrium in Martian atmosphere. In book Hypersonic aerodynamics and heat and mass transfer of descent space vehicles and planetary probes]. Moscow, Fizmatlit, 2011. pp. 248-274.

  20. Gidaspov V.Yu., Severina N.S. Elementarnye modeli i vychislitel’nye algoritmy fizicheskoj gazovoj dinamiki [Elementary models and computational algorithms of physical gas dynamics]. Moscow, Faktorial, 2014, 84 p.

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI