Hyperbolic Models of Non-stationary Heat Conduction


Аuthors

Kartashov E. M.1*, Nenakhov E. V.2**

1. MIREA — Russian Technological University (Lomonosov Institute of Fine Chemical Technologies), 78, Vernadsky prospect, Moscow, 119454, Russia
2. Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

*e-mail: kartashov@mitht.ru
**e-mail: newnew94@mail.ru

Abstract

The article considers practically important problems of non-stationary thermal conductivity for hyperbolic translation models. An analytical approach based on contour integration of operational solutions of hyperbolic models, leading to the new integral relationships convenient for numerical experiments was developed. The equivalence of new functional constructions and known analytical solutions for this class of problems is demonstrated. Based on the obtained relations, the wave character of the non-stationary thermal conductivity was described with account for the finite velocity of heat propagation; the jumps at the front of the heat wave were calculated. The proposed approach gives effective results while studying the thermal reaction to heating or cooling of regions bounded from within by a flat surface, either a cylindrical cavity or a spherical surface.

Keywords:

nonstationary heat conductivity, finite rate of heat propagation, new forms of analytical solutions

References

  1. Lykov А.V. Primenenie metodov termodinamiki neobratimykh protsessov k issledovaniyu teplo-i massoobmena [Application of methods of thermodynamics of irreversible processes to the study of heat and mass transfer]. Inzhenerno-fizicheskij zhurnal – Engineering and physics journal, 1965, vol.9, no. 3, pp. 287-304.

  2. Kartashov E.M. Аnaliticheskie metody v teorii teploprovodnosti tverdykh tel [Analytical methods in the theory of the thermal conductivity of solids]. Moscow, Vyssh.shkola, 2001. 550 p.

  3. Kartashov E.M., Kudinov V.А. Аnaliticheskaya teoriya teploprovodnosti i prikladnoj termouprugosti [Analytical theory of heat conduction and thermoelasticity]. Moscow, URRS, 2013. 656 p.

  4. Kirsanov Yu.А., Kirsanov А.Yu. Ob izmerenii vremeni teplovoj relaksatsii tverdykh tel [On the measurement of the thermal relaxation time of solids]. Izvestiya RАN, Energetika – Proceedings of the Russian Academy of Sciences. Power Engineering Journal, 2015, no.1, pp.113-122.

  5. Herwiq H, Beccert K. Experimental evidence about controversy concerning Fourier or non Fourier heat conduction in materials with non homogeneus inner structure. Heat and Mass Transfer, 2000, vol.36, pp. 387-392.

  6. Kartashov E.M. Аnaliticheskie resheniya giperbolicheskikh modelej teploprovodnosti [Analytical solutions of hyperbolic heat conduction models] // Inzhenerno-fizicheskij zhurnal – Engineering and physics journal, 2014, vol. 87, no. 5, pp.1072-1082.

  7. Carslaw H.S. and Iaeger I.C. Operational methods in applied mathematics, Oxford Univ. Press, London and New York, 1941 [Russ. ed. Carslaw H.S. and Iaeger I.C. Operatsionnye metody v prikladnoj matematike. Moscow, IL, 1948. 294 p.]

  8. Baumejster K. Khamill T. Giperbolicheskoe uravnenie teploprovodnosti. Reshenie zadachi o polubeskonechnom tele [Hyperbolic equation of heat conductivity. The solution of the problem of a semi-infinite body]. Teploperedacha – Heat transfer, 1969, no. 4, pp. 112-119.

  9. Podstrigach Ya.S., Kolyano Yu.M. Obobshhennaya termomekhanika [Generalized thermomechanics]. Kiev. Naukova Dumka,1978. 310 p.

  10. Shashkov А.G., Bubnov V.А., Yanovskij S.Yu. Volnovye yavleniya teploprovodnosti [Wave phenomena of heat conduction]. Minsk. Nauka i tekhnika, 1993. 279 p.

  11. Formalev V.F. Teploperenos v anizotropnykh tverdykh telakh [Heat transfer in anisotropic solids]. Moscow, Fizmatgiz, 2015. 280 p.

  12. Kartashov E.M. Novye sootnosheniya dlya analiticheskikh reshenij giperbolicheskikh modelej perenosa [New relations for the analytic solution of the hyperbolic transport models]. Izvestiya RАN, Ehnergetika – Proceedings of the Russian Academy of Sciences. Power Engineering, 2015, no. 4, pp. 38-48.

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI