Numerical modeling of heat and mass transfer in loop heat pipe condenser based on 3D/1D model


Аuthors

Pozhilov A. A.*, Khrabry A. I.**

Peter the Great St. Petersburg Polytechnic University, 29, Polytechnicheskaya str., St. Petersburg, 195251, Russia

*e-mail: aapozhilov@mail.ru
**e-mail: xbr@list.ru

Abstract

The article presents a numerical modeling technique of steady state modes of heat and mass transfer in the loop heat pipe (LHP) condenser based on hybrid 3D/1D approach. Mathematical model is based on the mass, momentum and energy conservation equations. The condenser is assumed of including a radiator plate with a tube attached to it, through which a coolant flows. Heat transfer in the radiator plate and tube walls is modeled based at a 3D‑approach. The 3D heat trans fer equation is solved numerically by the finite volume method employing non‑structured compu tational grid. Heat and mass transfer within the tube is computed in the framework of the one‑dimensional approximation. 3D and 1D models conjugation is realized on the tube inner surface. The tube inner wall temperature averaged over perimeter herewith is transferred from the 3D‑model to the 1D‑model, while the coolant temperature and heat transfer ratio are transferred in the opposite direction. As an example, a numerical analysis of heat and mass transfer in the condenser based on the developed model was performed. With that, three loops of the tube with the overall length of 3.2 m are located on radiator plate (with the size of 800×400×5 mm). It is assumed, that the radiator plate and tube are made of aluminum, and ammonia is employed as a coolant. All computations were performed while setting the condition of radiative heat exchange on all the surfaces. One of the surface sides (the outer one) was contacted with the space with the temperature 4 K, and the other side (the one with the attached tubes) and remained surfaces were radiating to medium with the temperature 290 K. The modeled operation mode of the loop heat pipe is determined by thermal power fed to the evaporator of 120 W and the vapor overheating of 1.2 K at the evaporator outlet. For the specified conditions the following results were obtained: the temperature variation along the longest side of the plate reaches 7 K, and in two other directions the temperature field in the plate is practically homogeneous (variations are less than 1 K). The non‑homogeneity of the temperature distribution over the tube wall is evaluated by the value of 1 K. The linear density of the heat rate, removed from the tube into the plate varies significantly while the coolant progressing along the tube, namely from 70 to 25 W/m. The maximum difference the coolant and the tube wall temperatures reaches up to 4 K.

Keywords:

numerical simulation, conjugate heat and mass transfer, loop heat pipe condenser

References

  1. Maydanik Yu.F. Konturnye teplovye truby – vysokoehffektivnye teploperedayushhie ustrojstva [Loop heat pipes – highly efficient heat transfer devices]. Innovatsii – Innovations, 2005, no. 5, pp. 83–86. In Russ.

  2. Maydanik Y.F. Loop heat pipes. Applied Thermal Engineering, 2005, vol. 25, no. 5-6, pp. 635–657. DOI: 10.1016/j.applthermaleng.2004.07.010.

  3. Launay S., Sartre V., Bonjour J. Analytical model for characterization of loop heat pipes. Journal of Thermophysics and Heat Transfer, 2008, vol. 22, no. 4, pp. 623–631. DOI: 10.2514/1.37439.

  4. Ku J., Ottenstein L., Douglas D., Hoang T. Multi-evaporator miniature loop heat pipe for small spacecraft thermal control – part 1: New technologies and validation approach. Proc. of 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. 2010, art. no. 2010-1493, 13 p.

  5. Siedel B., Sartre V., Lefevre F. Complete analytical model of a loop heat pipe with a flat evaporator. International Journal of Thermal Sciences, 2015, vol. 89, pp. 372–386. DOI: 10.1016/j.ijthermalsci.2014.11.014.

  6. Ramasamy N.S., Kumar P., Wangaskar B., Khandekar S., Maydanik Y.F. Miniature ammonia loop heat pipe for terrestrial applications: Experiments and modeling. International Journal of Thermal Sciences, 2018, vol. 124, pp. 263–278. DOI: 10.1016/j.ijthermalsci.2017.10.018.

  7. Buz V.N., Goncharov K.А., Аntonov V.А. Modelirovanie dinamicheskikh kharakteristik konturnoj teplovoj truby s regulyatorom [Simulation of dynamic characteristics of a loop heat pipe with a regulator] Trudy 4-j RNKT. Tom 5. Isparenie, kondensatsiya. Dvukhfaznye techeniya [Proceedings of the 4th RSCT. Volume 5. Evaporation, condensation. Two-phase flows]. Moscow, MPEI Publishing house, 2006. pp. 61–64. In Russ.

  8. Li Y.-Z., Wang Y.-Y., Lee K.-M. Dynamic modeling and transient performance analysis of a LHP-MEMS thermal management system for spacecraft electronics. IEEE Transactions on Components and Packaging Technologies, 2010, vol. 33, no. 3, pp. 597–606.

  9. Nishikawara M., Nagano H., Kaya T. Transient thermos-fluid modeling of loop heat pipes and experimental validation. Journal of Thermophysics and Heat Transfer, 2013, vol. 27, no. 4, pp. 641–647.

  10. Colella F., Rein G., Borchiellini R., Torero J.L. A novel multiscale methodology for simulating tunnel ventilation flows during fires. Fire Technology, 2011, vol. 47, no. 1, pp. 221–253. DOI: 10.1007/s10694-010-0144-2.

  11. Colella F., Rein G., Verda V., Borchiellini R. Multiscale modeling of transient flows from fire and ventilation in long tunnels. Computers and Fluids, 2011, vol. 51, no. 1, pp. 16–29. DOI: 10.1016/j.compfluid.2011.06.021.

  12. Nobile F. Coupling strategies for the numerical simulation of blood flow in deformable arteries by 3D and 1D models. Mathematical and Computer Modelling, 2009, vol. 49, no. 11–12, pp. 2152–2160. DOI:10.1016/j.mcm.2008.07.019.

  13. Papadakis G. Coupling 3D and 1D fluid-structure-interaction models for wave propagation in flexible vessels using a finite volume pressure-correction scheme. Communications in Numerical Methods in Engineering, 2009, vol. 25, no. 5, pp. 533–551. DOI: 10.1002/cnm.1212.

  14. Papukchiev A., Lerchl G. Extension and application of the coupled 1D-3D thermal-hydraulic code Athlet-ANSYS CFX for the simulation of liquid metal coolant flows in advanced reactor concepts. Proceedings of 20th International Conference on Nuclear Engineering and the ASME 2012 Power Conference. 2012, vol. 4, no. 1, pp. 563–573. DOI: 10.1115/ICONE20-POWER2012-54872.

  15. Corzo S., Ramajo D., Nigro N. 1/3D modeling of the core coolant circuit of a PHWR nuclear power plant. Annals of Nuclear Energy, 2015, V. 83, pp. 386–397. DOI: 10.1016/j.anucene.2014.12.035.

  16. Zajtsev D.K., Pozhilov А.А., Smirnov E.M., Smirnovskij А.А. Chislennoe modelirovanie sopryazhennogo teplomassoperenosa v isparitele konturnoj teplovoj truby [Numerical simulation of the conjugate heat and mass transfer in the evaporator of a loop heat pipe] Proceedings of “Parallel computational technologies (PCT) 2016”, Arkhangelsk, 2016, pp. 512–520. In Russ.

  17. Dussinger P.M., Sarraf D.B., Anderson W.G. Loop heat pipe for TacSat-4. AIP Conference Proceedings, 2009, vol. 1103. Iss. 1, pp. 91–100.

  18. Pozhilov A.A., Zaitsev D.K., Smirnov E.M., Smirnovsky A.A. Numerical simulation of heat and mass transfer in a 3D model of a loop heat pipe evaporator. St. Petersburg Polytechnical University Journal: Physics and Mathematics, 2017, vol. 3, no. 3, pp. 210–217. DOI:10.1016/j.spjpm.2017.09.013.

  19. Kutateladze S.S. Teploperedacha i gidrodinamicheskoe soprotivlenie. Spravochnoe posobie [Heat Transfer and Hydrodynamic Resistance: Handbook]. Moscow: Energoatomizdat, 1990. 367 p.

  20. Turner J.M. Annular two-phase flow. Ph.D. Dissertation. Dartmouth College, Hanover, NH. 1966.

  21. Traviss D.P., Rohsenow W.M., Baron A.B. Forced convection condensation in tubes: A heat transfer correlation for condenser design. ASHRAE Trans., 1973, vol. 79, part 1, pp. 157–165.

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI