Temperature state analysis and design of thermal protection of a tourist class space shuttle wing from hybrid composite material


Аuthors

Ashikhmina E. R.*, Ageyeva T. G., Prosuntsov P. V.**

Bauman Moscow State Technical University, MSTU, 5, bldg. 1, 2-nd Baumanskaya str., Moscow, 105005, Russia

*e-mail: katrin‑katushka@yandex.ru
**e-mail: pavel.prosuntsov@mail.ru

Abstract

The article considers the issues of thermal design of a wing composite structure from polymer composite material for the suborbital tourist class space shuttle. The data on thermo‑physical characteristics of the wing covering materials were obtained by numerical modeling of heat exchange in the representative volume element of materials. Aerodynamic flow‑around modeling and determining the external heat loading, acting on the spacecraft wing and shell while its reentering, were performed with the special software. The results of temperature state analysis allowed reveal the necessity of the thermal protective layer application. The material based on aluminum silicate, called “spheroplastic”, was selected for such kind of protection. To enhance the spacecraft structural and technological perfection the problem on obtaining the spheroplastic optimal distribution over the wing surface was solved. By the thermal protection parametric optimization its rational distribution ensuring the spacecraft workability was obtained.

Keywords:

thermal design, space tourism, thermal protection

References

  1. Ageeva T.G. Razrabotka metodiki proektirovaniya teplonagruzhennykh elementov konstruktsij kryl’ev suborbital’nykh mnogorazovykh kosmicheskikh apparatov. Kand. tekhn. nauk dis. 05.07.03 [Development of a technique for designing heat-loaded structural elements for the wings of suborbital reusable spacecraft. Dis. technics sciences. 05.07.03]. Moscow, 2017. 183 p. In Russ.

  2. Von der Dunk, Frans G. Space tourism, private spaceflight and the law: Key aspects. Space, Cyber, and Telecommunications Law Program Faculty Publications, 2011, no. 27, pp. 146–152.

  3. Peeters W. From suborbital space tourism to commercial personal space flight. Acta Astronautica, 2010, no. 66, pp. 1625–1632.

  4. Guerster M. Architectural Options and Optimization of Suborbital Space Tourism Vehicles (Master Thesis). RT-MA 2017/2.Available at: http://systemarchitect.mit.edu/docs/guerster17a.pdf

  5. Seedhouse E. Virgin Galactic. The First Ten Years. Springer, 2015. 203 p.

  6. XCOR Lynx suborbital spacecraft nears final assembly. Composites World. 2016. Available at: http://www.compositesworld.com/news/xcor-lynx-suborbital-spacecraft-nears-final-assembly.

  7. Copenhagen Suborbitals. 2017. Available at: https://copenhagensuborbitals.com.

  8. Space Vehicles. Dassault Aviation. 2016. Available at: URL: https://www.dassault-aviation.com/fr/espace/nos-activites-espace/vehicules-aerospatiaux.

  9. Human Spaceflight. Airbus. 2016. Available at: https://www.airbus.com/space/human-spaceflight.html.

  10. КосмоКурс. 2014. Available at: http://www.cosmocourse.com/. In Russ.

  11. Belfiore M. Stratolaunch. 2012. Available at: http://www.popularmechanics.co.za/tech/stratolaunch/

  12. Аgeeva T.G., Dudar E.N., Reznik S.V. Kompleksnaya metodika proektirovaniya konstruktsii kryla mnogorazovogo kosmicheskogo apparata [Comprehensive technique for development the design of the wing of a reusable spacecraft]. Аviakosmicheskaya tekhnika i tekhnologiya – Aerospace technology, 2010, no. 2, pp. 3–8. In Russ.

  13. Bizony P. The Space Shuttle. Celebrating Thirty Years of NASA’s First Space Plane. Minneapolis: Zenit Press, 2011. 298 p.

  14. Nikitin P.V. Teplovaya zashhita: Uchebnik [Thermal protection: Textbook]. Moscow: MАI Publ., 2006. 512 p. In Russ.

  15. Аgeeva T.G., Аshikhmina E.R., Prosuntsov P.V. Optimizatsiya struktury gibridnogo kompozitsionnogo materiala dlya obshivki kryla mnogorazovogo kosmicheskogo appara taturisticheskogo klassa [Optimization of hybrid composite material structure for wing skin of tourist class reusable space vehicle]. Vestnik MGTU im. N.E. Baumana. Seriya “Mashinostroenie” – Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering, 2018, no. 1, pp.4–19. DOI 10.18698/0236-3941-2018-1-4-19. In Russ.

  16. Safri S.N.A., Sultan M.T.H., Jawaid M., Jayakrishna K. Impact behaviour of hybrid composites for structural applications: A review. Composites Part B: Engineering, 2018, vol. 133, pp. 112–121. DOI: 10.1016/j.compositesb.2017.09.008

  17. Аgeeva T.G., Mikhajlovskij K.V. Obosnovanie vybora materialov dlya kryla suborbital’nogo mnogorazovogo kosmicheskogo apparata turisticheskogo klassa [Substantiation of the choice of materials for the wing of tourist class suborbital reusable space vehicle]. Inzhenernyj zhurnal: nauka i innovatsii – Engineering Journal: Science and Innovation, 2016, no. 10 (58), 9 p. In Russ.

  18. Trzepieciński T., Ryzińska G., Biglar M., Gromada M. Modelling of multilayer actuator layers by homogenisation technique using Digimat software. Ceramics International, 2017, vol. 43, pp. 3259–3266.

  19. Ashikhmina E.R, Ageeva T.G, Prosuntsov P.V. Teplovoe proektirovanie obshivki kryla mnogorazovogo kosmicheskogo apparata turisticheskogo klassa [Thermal design of the wing skin of a tourist class reusable spacecraft]. Inzhenernyj zhurnal: nauka i innovatsii – Engineering Journal: Science and Innovation, 2017, no. 12 (72), 3 p. In Russ.

  20. Zinov’ev P.А., Smerdov А.А. Optimal’noe proektirovanie kompozitnykh materialov: uchebnoe posobie po kursu “Proektirovanie kompozitnykh konstruktsij. Ch. II” [Optimal design of composite materials: A tutorial on the course “Design of composite structures. Part II ”]. Moscow, MSTU N.E. Bauman Publ., 2006. 103 p. In Russ.

  21. Stekloplastiki, svyazuyushhie materialy, penoplasty, poliamidy, fotopolimery [Fiberglassplastic, binding materials, foams, polyamides, photopolymers]. 2016. Available at: http://www.xn----7sbnoidkjddgcex2t.xn—p1ai/penoplasty_poliamidy_sopolimery. In Russ.

  22. Prosuntsov P.V., Taraskin N.Y. Theoretical and numerical characterization of the thermal physical properties of carbon ceramic materials. MATEC Web of Conferences, 2016, vol. 72, pp. 1–7.

  23. Sokolov I.I. Sferoplastiki na osnove termoreaktivnykh svyazuyushhikh dlya izdelij aviatsionnoj tekhniki: avtoref. dis ... na soisk. uchen. step. kand. tekhn. nauk (05.16.09) [Spheroplastics on the basis of thermosetting binders for aeronautical products. Abstract of diss. technics sciences]. Moscow, VIAM, 2013. 21 p. In Russ.

  24. Yakovenko T. V., Yarullina G.K., Garustovich I.V.Shishilov O.N., Melnikov N.O. Sferoplastiki kak termoizoliruyushhie zashhitnye materialy promyshlennogo naznacheniya [Spheroplastics as thermal insulating protective materials for industrial applications]. Uspekhi v khimii i khimicheskoj tekhnologii – Adnvances in Chemistry and Chemical Technology, 2016, vol. 30, no. 8, pp. 71–73. In Russ.

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI