The article considers the effect of the thermal feedback occurring in electronic systems while functioning of integrated circuits, resistors, electro and radio components. Thermal feedback presents in all electronic systems, where operating parameters and power consumption depend on temperature, and temperature, in its turn, depends on the consumed power.Just the parameters interactive interdependence occurring herewith and returning new values of parameters and temperature through the feedback leads to the thermal feedback.
The thermal feedback may be either positive, when power consumption by the electronic circuit components increases with temperature growth, or negative, when consumed power decreases with temperature growth. The thermal feedback can drastically affect the workability and reliability an electronic circuit, and it presents a serious hindrance while creating competitive electronic circuits. While the positive thermal feedback may lead to the system parameters bounds violation, failures and burning-out, the negative feedback, on the contrary, has stabilizing effect on functional and thermal modes of the systems. The article analyzes conceptual sense of the thermal feedback and its impact on the thermal processes in electronic systems. A method for thermal feedback modeling based on introducing new temperature-dependent schematic elements into the system thermal model is proposed. Such thermal feedback model allows its inclusion into existing algorithms and effective software for electronic systems thermal design.The developed model application was considered on the example of real electronic system, and effect of the thermal feedback on the thermal processes developing in its components.
Madera А.G. Raschet dinamicheskogo rezhima poluprovodnikovykh mikroskhem s uchetom teplovoj obratnojsvyazi [Calculation of the dynamic mode of semiconductor chipswith regard forthe thermal feedback]. Mikroelektronika – Microelectronics, 1982, vol. 11, no. 2, pp. 175–177. In Russ.
Madera А.G. Modelirovanie teploobmena v tekhnicheskikh sistemakh [Modeling of heat transfer in technical systems]. Moscow: Publ. Nauch. fond “Pervaya issled. lab. im. akad. V.А. Mel’nikova”, 2005. 204 p. In Russ.
Sergeev V.А., KhadakovА.M. Nelinejnye teplovye modeli poluprovodnikovykh priborov [Nonlinear thermal models of semiconductor devices]. Ul’yanovsk: Ulyanovsk State Technical University Publ., 2012. 230 p. In Russ.
Chekanov А.N. Raschety i obespechenie nadezhnost ielektronnoj apparatury [Calculations and the reliability assurance of electronic equipment]. Moscow, KnoRus Publ., 2012. 438 с. In Russ.
Camarchia V., Cappelluti F., Pirola M., Guerrieri S.D., Ghione G. Self-consistent electrothermal modeling of class A, AB, and B power GaN HEMTs under modulated RF excitation. IEEE Trans. on Microwave Theory and Techniques, 2007, vol. 55, no. 9, pp. 1824–1831.
Tenbroek B.M., Lee M.S., Redman-White W., Bunyan R.J.T., Uren M.J. Self-heating effects in SOI MOSFET’s and their measurement by small signal conductance techniques. IEEE Trans. on Electron Devices, 1996, vol. 43, no. 12, pp. 2240–2248.
Ellison G.N. Thermal Computations for Electronics. Conductive, Radiative, and Convective Air Cooling. N.Y.: CRC Press, 2011. 416 р.
Hnatec E.R. Integrated Circuit Quality and Reliability. London, N.Y.: Taylor & Francis, 2005. 786 p.
Kuuse M., Loikkanen M., Bognar Gy. Theoretical investigation of feedback effects in low-power circuits. Proc.of THERINIC. Belgirate, Italy. 28–30 sept. 2005. pp. 55-58.
Madera А.G., Kandalov P.I. Modelirovanie trekhmernykh temperaturnykh polej v ehlektronnykh modulyakh [Modeling of 3D temperature fields in electronic modules]. Programmnye produkty i sistemy – Software&System, 2010, no. 2, p. 36. In Russ.
Madera А.G., Kandalov P.I. Matrichno-topologicheskij metod ma-tematicheskogo i komp’yuternogo modelirovaniya temperaturnykh polej v elektronnykh modulyakh: programmnyj kompleks STF-ElectronMod [Matrix-topological method of mathematical and computer modeling of temperature fields in electronic modules: software complex STF-ElectronMod]. Programmnye produkty i sistemy – Software&System, 2012, no. 4, p. 34. In Russ.
Madera А.G. Matematicheskoe modelirovanie interval’no stokhasticheskikh nestatsionarnykh nelinejnykh teplovykh protsessov v ehlektron-nykh sistemakh [Mathematical modeling of interval stochastic nonlinear transient thermal processes in electronic systems]. Teplovye protsessy v tekhnike – Thermal processes in engineering. 2016, vol. 8, no. 3, pp. 126‒136. In Russ.
mai.ru — informational site of MAI Copyright © 2009-2024 by MAI |