Thermal protection system for ceramic thermally stressed elements of descent and reusable launch vehicles


Аuthors

Kolychev A. V.*, Kernozhitsky V. A.**, Levikhin A. A.***

Baltic State Technical University “VOENMEH ” named after D.F. Ustinov, 1, 1st Krasnoarmeyskaya str., Saint Petersburg, 190005, Russia

*e-mail: migom@mail.ru
**e-mail: vakern@mail.ru
***e-mail: levihin1981@gmail.com

Abstract

The article is devoted to thermoemission thermal protection of the ceramics thermally stressed elements and the descent vehicles being developed in Baltic State Technical University “VOENMEH”.

The presented work demonstrates the evaluation results of the temperature drop value on the ceramics thermally stressed elements and reusable rocket carriers’ stages surface while applying thermoemission heat protection. This thermal heat protection is based on the thermionic emission phenomenon, i.e. electron ejection by the heated metal, accompanied by the electronic cooling.

The main supposition in this work is invariable value preservation of the electron work function of the protected descent vehicles and reusable launch vehicles elements during the entire time of their high-speed flight. In effect, the electron work function specified value maintenance of in this period represents complex technical challenge.

The work demonstrates that depending on the surface temperature without thermoemission thermal protection and electron work function, the temperature drop may achieve 700–800 degrees without accounting for thermal flows of aerodynamic heating changing at such temperature drop. This change is planned to be accounted for hereafter.

Such temperature drop is explained by the fact that the heating thermal energy is distributed between the crystal grid nodes of the ceramics thermally stressed elements material and electrons. At the same time, at thermionic emission each electron takes away the energy of the work function order, which undoubtedly is a part of the aerodynamic heating thermal energy. As a result, the temperature decreases. The thermionic emission dependence on temperature allows ensuring the temperature stresses and deformations decrease while aerodynamic heating, increasing stability of the protected ceramics thermally stressed elements in conditions of hostile environment of the incoming high-speed flow.

The thermoemission thermal protection being developed will allow reduce temperature of the protected ceramics thermally stressed elements of the descent vehicles and the recovering stages of reusable launch vehicles, including aircraft type, and temperature stresses and deformations occurring in them. On this ground, a possibility arises to enhance significantly the resource of these elements and increase the number of their reutilization before the marginal state.

Keywords:

hermionic emission, electronic cooling, thermoemission thermal protection, descent vehicle, recoverable vehicles

References

  1. Byikov L.V., Nikitin P.V., Pashkov O.A. Matematicheskoe modelirovanie protsessov obtekaniya zatuplennogo tela vyisokoskorostnyim potokom [Mathematical modeling of high-speed flow around a blunt body]. Trudy MAI, 2014, no.78, 19 p. In Russ.

  2. Egorov I.A. Uchet balansa teplovyih potokov na vneshney poverhnosti letatelnogo apparata [Heat flow balance accounting on the aircraft outer surface]. Trudy MAI, 2017, no.93, 6 p. In Russ.

  3. Sadchikov I.I., Chulkov S.A. Obosnovanie ratsionalnoy poletnoy kratnosti ispolzovaniya dvigateley i planera mnogorazovyih sredstv vyivedeniya poleznoy nagruzki na kosmicheskie orbityi [Substantiation of rational flight multiplication factor of using rocket engines and glider in the system’s perspective reusable launch vehicles of payload in orbits]. Vestnik Moskovskogo aviatsionnogo instituta, 2009, vol. 16, no. 6, 24 p. In Russ.

  4. Nesterov V.E., Rudakov V.B., Makarov M.I. Analiz osnovnyih zadach eksperimentalnoy otrabotki mnogorazovoy raketno-kosmicheskoy sistemyi [Development test objectives analysis of reusable space rocket system]. Vestnik Moskovskogo aviatsionnogo instituta – Aerospace MAI Journal, 2013, vol. 20, no. 5, pp. 77–85. In Russ.

  5. Nikitin P.V., Sotnik E.V. Vosproizvedenie konvektivno-luchistogo teploobmena, soputstvuyushhego vkhodu kosmicheskikh apparatov v atmosfery planet so vtoroj kosmicheskoj skorost’yu [Reproduction of the convective-radiant heat exchange accompanying the entrance of space vehicles in the atmospheres of planets with the second space velocity]. Trudy MAI, 2011, no. 42, 16 p. In Russ.

  6. Fedorchenko E.A., Nikitin P.V. Teplo- i massoobmen na pronitsaemoj poverkhnosti sistemy teplovoj zashhity spuskaemogo kosmicheskogo apparata [Heat and mass exchange on a permeable surface of the system of the thermal protection of the descent vehicle of the spacecraft small form]. Trudy MAI, 2012, no. 50, 19 p. In Russ.

  7. Nenarokomov A.V., Titov D.M., Munoz G.V. Аvtomаticheskoe proektirovаnie nerаzrushаemoj teplovoj zаshhity kosmicheskikh аppаrаtov [Computer design of non-destructive thermal protection of spacecraft]. // Vestnik Moskovskogo Aviatsionnogo Instituta – Aerospace MAI Journal, 2010, vol. 17, no. 2, 9 p. In Russ.

  8. Graschenkov D.V., Schegoleva N.E., Simonenko E.P., Ermakova G.V. Vyisokotemperaturnyiy keramicheskiy kompozitsionnyiy material, ustoychivyiy pri dlitelnoy ekspluatatsii do 2000 °C s mnogourovnevoy kompleksnoy sistemoy zaschityi [High-temperature ceramic composite material, resistant to long-term operation up to 2000 ° C with a multi-level integrated protection system]. Vse materialyi. Entsiklopedicheskiy spravochnik – All materials. Encyclopedic reference book, 2011 no. 8, pp. 25–28. In Russ.

  9. Rudnev A. M., Dikiy K. L. Povyshenie zharoprochnosti keramicheskikh materialov putem sozdaniya voloknistykh struktur [Possibilities of increase of hot-resistance of ceramic materials by creation of fibred structures struktur]. Visnik SevNTU – Bulletin of Sevastopol National Technical University, 2011, no. 119, pp. 50–53.

  10. Pryamilova E.N., Poylov V.Z., Lyamin Yu.B. Termokhimicheskaya stojkost’ keramiki na osnove boridov tsirkoniya i gafniya [Thermochemical stability of the ceramics based on zirconium and hafnium borides]. Vestnik Permskogo natsionalnogo issledovatelskogo politehnicheskogo universiteta. Himicheskaya tehnologiya i biotehnologiya – PNRPU Bulletin. Chemical Technology and Biotechnology, 2014, no. 4, pp. 55–67. In Russ.

  11. Varrik N.M., Ivahnenko Yu.A., Maksimov V.G. Oksid-oksidnyie kompozitsionnyie materialyi dlya gazoturbinnyih dvigateley (obzor) [Oxide-oxide composites for gas-turbine engines]. Trudy VIAM – Proceedings of the All-Russian Research Institute of Aviation Materials, 2014, no. 8, pp. 3–21. In Russ.

  12. Kolyichev A.V., Kernozhitskiy V.A. Teplovaya zaschita giperzvukovyih letatelnyih apparatov (LA) s ispolzovaniem yavleniya termoelektronnoy emissii [Thermal protection of hypersonic flying machines (HFM) with use of the phenomenon of thermionic issue]. Reshetnevskie chteniya – Reshetnev reading, 2009, vol. 1, no.13, pp. 29–30. In Russ.

  13. Kernozhitskiy V.A., Kolyichev A.V., Ohochinskiy D.M. Termoemissionnyiy sposob teplovoy zaschityi chastey letatelnyih apparatov pri ih aerodinamicheskom nagreve [Thermionic method of thermal protection of aircraft parts during aerodynamic heating]. Patent RF, no. 2404087, 2009. In Russ.

  14. Kernozhitskiy V.A., Kolyichev A.V., Ohochinskiy D.M. Kryilo vyisokoskorotsnogo zvukovogo letatelnogo apparata v usloviyah ego aerodinamicheskogo nagreva [Wing hypersonic aircraft in terms of its aerodynamic heating]. Patent RF, no. 2430857, 2009. In Russ.

  15. Kernozhitskiy V.A., Kolyichev A.V., Ohochinskiy D.M. Kryilo giperzvukovogo letatelnogo apparata v usloviyah ego aerodinamicheskogo nagreva [Wing hypersonic aircraft in terms of its aerodynamic heating]. Useful model patent RF no. 95637, 2010. In Russ.

  16. Kernozhitskiy V.A., Atamasov V.D. Kryilo giperzvukovogo letatelnogo apparata v usloviyah ego aerodinamicheskogo nagreva [Wing hypersonic aircraft in terms of its aerodynamic heating]. Patent RF, no. 2495788, 2012. In Russ.

  17. Kernozhitskiy V.A., Kolyichev A.V., Ohochinskiy D.M. Kryilo giperzvukovogo letatelnogo apparata v usloviyah ego aerodinamicheskogo nagreva [Wing hypersonic aircraft in terms of its aerodynamic heating]. Patent RF, no. 2506199, 2012. In Russ.

  18. Kernozhitskiy V.A., Kolyichev A.V. Kryilo giperzvukovogo letatelnogo apparata v usloviyah ego aerodinamicheskogo nagreva [Wing hypersonic aircraft in terms of its aerodynamic heating]. Patent RF, no. 2572009, 2014. In Russ.

  19. Kolyichev A.V. Аktivnaya teplovaya zashhita elementov konstruktsii giperzvukovogo letatel’nogo apparata na novykh fizicheskikh printsipakh pri aehrodinamicheskom nagreve [Active thermal protection of configuration items of a hypersonic flight vehicle on new physical principles at aerodynamic heating]. Trudy MAI, 2012, no. 51, 18 p. In Russ.

  20. Kolyichev A.V. Аktivnaya termoemissionnaya teplovaya zashhita elementov konstruktsii giperzvukovogo letatel’nogo apparata pri ikh aehrodinamicheskom nagreve i granitsy ee primenimosti [Active thermionic thermal protection of elements of a design of the hypersonic flying machine at their aerodynamic heating and borders of its applicability]. Trudy MAI, 2013, no. 68, 15 p. In Russ.

  21. Kolyichev A.V. Otsenka parametrov funktsionirovaniya termoemissionnoj teplovoj zashhity giperzvukovogo letatel’nykh apparatov [Parameters estimation of thermionic thermal protection functioning of hypersonic flying vehicles]. Trudy MAI, 2014, no. 74, 28 p. In Russ.

  22. Ushakov B.A., Nikitin V.D., Emelyanov I.Ya. Osnovy termoehmissionnogo preobrazovaniya ehnergii [Basics of Thermionic Energy Conversion]. Moscow: Atomizdat, 1974, 288 p. In Russ.

  23. Kvasnikov L.A., Kaybyishev V.Z., Kalandarishvili A.G. Rabochie protsessyi v termoemissionnyih preobrazovatelyah yadernyih energeticheskih ustanovok [Work processes in thermionic converters of nuclear power plants]. Moscow: MAI, 2001. 208 p. In Russ.

  24. Fomenko V.S. Emissionnyie svoystva materialov [Emission properties of materials]. Kiev: Naukova dumka, 1981. 339 p. In Russ.

  25. Babichev A.P., Babushkina P.L., Bratkovskiy A.M., et al. Fizicheskie velichiny: Spravochnik. Pod. red. I.S. Grigor’eva, E.3. Mejlikhova [Physical quantities: Handbook. Ed. I.S. Grigoriev, E. 3. Meilikhov]. Moscow: Energoatomizdat, 1994. 1232 p. In Russ.

  26. Kresanov V.S., Malahov N.P., Morozov V.V., et. al. Vyisokoeffektivnyiy emitter elektronov na osnove geksaborida lantana [Highly efficient electron emitter based on lanthanum hexaboride]. Moscow: Energoatomizdat, 1987. 152 p. In Russ.

  27. Alkandry H., Hanquist K., Boyd I.D. Conceptual analysis of electron transpiration cooling for the leading edges of hypersonic vehicles. 11th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, AIAA AVIATION Forum (AIAA 2014-2674), 2014, 18 p. DOIs: 10.2514/6.2014-2674

  28. Hanquist K.M., Hara K., Boyd I.D. Modeling of electron transpiration cooling for hypersonic vehicles. 46th AIAA Thermophysics Conference, AIAA AVIATION Forum (AIAA 2016-4433), 2016, DOI: 10.2514/6.2016-4433

  29. Hanquist K.M., Boyd I.D. Comparisons of computations with experiments for electron transpiration cooling at high enthalpies. 45th AIAA Thermophysics Conference, AIAA AVIATION Forum, (AIAA 2015-2351), 2015, 13 p. DOI: 10.2514/6.2015-2351

  30. Hanquist K.M., Alkandry H., Boyd I.D. Evaluation of computational modeling of electron transpiration cooling at high enthalpies. Journal of Thermophysics and Heat Transfer, 2017, vol. 31, no. 2, pp. 283–293.

  31. Uribarri L., Allen E.H. Electron transpiration cooling for hot aerospace surfaces. 20th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, International Space Planes and Hypersonic Systems and Technologies Conferences (AIAA 2015-3674), 2015. DOI: 10.2514/6.2015-3674

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI