Gas dynamic and infrared radiation computing of 3D jets with account for vibrational non-equilibrium


Аuthors

Molchanov A. M.*, Maslova D. V.

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

*e-mail: alexmol_2000@mail.ru

Abstract

A technique for gas dynamic and IR radiation computing of vibrational non-equilibrium gas and multiphase flows in the three-dimensional statement was developed. The radiation model is based on the k-distribution method for the vibrational non-equilibrium gas, which employs special equations for the averages over the throughput capacity band and effective Plank function. Comparison of the test problems computational results with the results obtained by the other authors demonstrated satisfactory agreement. The article shows significant growth of heat radiation while the incoming flow angle of attack increases. Accounting for the real atmosphere chemical composition plays significant role in jets computing at the heights above 100 km.

Keywords:

vibrational non-equilibrium, radiation, multiphase flows, heat radiation, k-distribution

References

  1. Anfimov N.A., Karabadjak G.F., Khmelinin B.A., Plastinin Y.A., Rodinov A.V. Analysis of Mechanisms and Nature of Radiation from Aluminum Oxide in Different Phase States in Solid Rocket Exhaust Plumes. AIAA Paper 93-2818, 1993.

  2. Rodionov A., Plastinin Yu., Drakes J., Simmons M., Hiers III. R. Modeling of Multiphase Alumina-Loaded Jet Flow Fields. AIAA Paper 98-3462, 1998.

  3. Plastinin Yu.A. Modelirovanie izlucheniya himicheski reagiruyushchih dvuhfaznyh sverhzvukovyh nedorasshirennyh struj [The radiation modeling of chemically reacting two-phase supersonic underexpanded jets]. Kosmonavtika i raketostroenie – Astronautics and rocket science, 2004, no. 3 (36), pp. 18–26. In Russ.

  4. Zavelevich F.S., Molchanov A.M., Ushakov N.N. Computation of gas and multiphase supersonic jets with nonequilibrium processes. Journal of Thermophysics and Heat Transfer, 2015, vol. 29, no. 3, pp. 587–593

  5. Zavelevich F.S., Ushakov N.N. Vzaimodejstvie vyhlopnyh struj raketnyh dvigatelej na razlichnyh toplivah s atmosferoj primenitel'no k ocenke ehkologicheskoj bezopasnosti zapuskov raket i raket-nositelej. [Interaction of exhaust jets of rocker propulsions on various propellants with atmosphere for estimation of ecological safety of firing of rockets and launchers]. Vestnik Samarskogo universiteta. Aehrokosmicheskaya tekhnika, tekhnologii i mashinostroenie – Vestnik of Samara University. Aerospace and Mechanical Engineering, 2012, no. 3-1 (34), pp. 226–234. In Russ.

  6. Burt J.M., Boyd I.D. High altitude plume simulations for a solid propellant rocket. AIAA Journal, 2007, vol. 45, no. 12, pp. 2872–2884.

  7. Molchanov A.M., Nikitin P.V. Uzkopolosnaya baza dannyh dlya rascheta izlucheniya produktov sgoraniya s ispol'zovaniem k-raspredeleniya [Narrowband database for calculating the radiation of combustion products by using k-distribution]. Teplovye processy v tekhnike – Thermal processes in engeneering, 2014, no. 10, pp. 448–455. In Russ.

  8. Molchanov A.M. Raschet teplovogo izlucheniya kolebatel'no neravnovesnogo gaza metodom k-raspredeleniya [thermal radiation simulation of vibrationally nonequilibrium gas using k-distribution method]. Fiziko-himicheskaya kinetika v gazovoj dinamike – Physical-chemical kinetics in gas dynamics, 2015, vol. 16, no. 1. In Russ. http://chemphys.edu.ru/issues/2015-16-1/articles/317/

  9. Molchanov A.M., Bykov L.V. Three-Equation K-ε-Vn Turbulence Model for High-Speed Flows. AIAA Paper 2013-3181. 30 pp.

  10. Molchanov A.M., Bykov L.V., Nikitin P.V. Model' turbulentnosti dlya szhimaemyh vysokoskorostnyh techenij, osnovannaya na predstavlenii korrelyacii «davlenie — skorosti deformacij» [turbulence model for compressible high-speed flows based on modelling of pressure–strain correlation]. Teplovye processy v tekhnike – Thermal processes in engeneering, 2013, no. 4, pp. 146–152. In Russ.

  11. Leone S.R. Rate coefficients for vibrational energy transfer involving the hydrogen halides. Journal of Physical and Chemical Reference Data, 1982, vol. 11, no. 3, pp. 953–996.

  12. 12     Henderson R. Vliyanie kinetiki processa kristallizacii na ehnergeticheskie harakteristiki raketnogo dvigatelya [Influence of the kinetics of the crystallization process on the energy characteristics of a rocket engine]. Raketnaya texnika i kosmonavtika – Rocket technology and astronautic, 1977, vol. 15, no. 4, pp. 183–185. In Russ.

  13. Henderson C.B. Drag coefficient of spheres in continuum and rarefied flows. AIAA Journal, 1976, vol. 14, no. 6, pp. 707–708.

  14. Sternin L.E. Dvuhfaznye mono- i polidispersnye techeniya gaza s chasticami [Two-phase mono-and polydisperse gas flows with particles]. Moscow: Mashinostroenie, 1980. 172 p. In Russ.

  15. Molchanov A.M. Numerical Simulation of Supersonic Chemically Reacting Turbulent Jets. AIAA Paper 2011-3211, 37 p.

  16. Vitkin E.I., Karelin V.G., Kirillov A.A, Suprun A.S., Khadyka Ju.V. A physico-mathematical model of rocket exhaust plumes. Int. J. Heat Mass Transfer. 1997, vol. 40, no. 5, pp. 1227–1241.

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI