Studying combustion of liquid hydrocarbons while spraying by the superheated water steam jet


Аuthors

Anufriev I. S.

Kutateladze Institute of Thermophysics, Siberian Branch of RAS, Novosibirsk, 630090, Russia

e-mail: anufriev@itp.nsc.ru

Abstract

The article studies experimentally the process of liquid hydrocarbons combustion while spraying by the jet of superheated water vapor on an example of the diesel fuel. The distinctive feature of this method consists in the fact that both the fuel and the spraying medium (carrying phase) – water vapor – are not pre-mixed with each other: the liquid fuel flows on the steam jet base. As a result, the uniform fine gas-drop flow is formed. Besides the fuel spraying, the superheated steam increases the fuel drops temperature. This intensifies mass exchange and mixture formation facilitating the stable ignition. With that, the steam gasification of the fuel thermal decomposition products with water gas forming occurs in the combustion zone.

The operating parameters impact on the combustion process characteristics in the presence of superheated steam was studied with the burner laboratory breadboard (with up to 20 kW capacity), such as heat generation and combustion products composition, the flame temperature. The dependencies of the burner basic thermo-technical and ecological indicators on the flow rates of superheated water steam and fuel consumption were obtained. Maximal fuel combustion completeness reaches 98.6%.

With an increase in the steam mass fraction (up to 50%), a decrease in the nitrogen oxides content is observed. The minimum value of the carbon monoxide content is of 5 mg/kWh, the nitrogen oxides level herewith is maximal, but it does not exceed 90 mg/kWh, corresponding to class 3 by EN 267. An empirical relationship was obtained, which allowed determining the steam and fuel flow rates, ensuring minimal CO emissions for a given burner power. The maximal temperature in the flame depends on the steam and fuel flow rates, and it can reach 1355°C.

Keywords:

burner unit, diesel fuel, superheated steam, fuel spraying, laboratory research, flame temperature, combustion heat, gas analysis

References

  1. Alekseenko S.V., Pashchenko S.E., Salomatov V.V. Nanocluster initiation of offgrade hydrocarbon fuels. Journal of Engineering Physics and Thermophysics, 2010, vol. 83, no. 4, pp.729–741. DOI: 10.1007/s10891-010-0403-6

  2. Nadeem M., Rangkuti C., Anuar K., Haq M.R.U., Tan I.B., Shah S.S. Diesel engine performance and emission evaluation using emulsified fuels stabilized by conventional and gemini surfactants. Fuel, 2006, vol. 85, pp. 2111–2119. DOI: 10.1016/j.fuel.2006.03.013

  3. Samec N., Kegl B., Dibble R.W. Numerical and experimental study of water/oil emulsified fuel combustion in a diesel engine. Fuel, 2002, vol.81, pp. 2035–2044. DOI: 10.1016/S0016-2361(02)00135-7

  4. Wang L.P., Fu W.B. An analysis of the combustion characters and the mechanism of oil-consumption economy for diesel engines using water-blended oil. Fuel Processing Technology, 2001, vol. 72, no. 1, pp. 47–61. DOI: 10.1016/S0378-3820(01)00183-7

  5. Kökkülünk G., Gonca G., Ayhan V., Cesur İ., Parlak A. Theoretical and experimental investigation of diesel engine with steam injection system on performance and emission parameters. Applied Thermal Engineering, 2013, vol. 54, no. 1, pp. 161–170. DOI: 10.1016/j.applthermaleng.2013.01.034

  6. Parlak A., Ayhan V., Cesur İ., Kökkülünk G. Investigation of the effects of steam injection on performance and emissions of a diesel engine fuelled with tobacco seed oil methyl ester. Fuel Processing Technology, 2013, vol. 116, pp. 101–109. DOI: 10.1016/j.fuproc.2013.05.006

  7. Mohapatra D., Swain R.K., Jena S.P., Acharya S.K., Patnaik P.P. Effect of steam injection and FeCl3 as fuel additive on performance of thermal barrier coated diesel engine. Sustainable Environment Research, 2018, vol. 28, no. 5, pp. 247–255. DOI: 10.1016/j.serj.2018.03.004

  8. Williams A. Combustion of liquid fuel sprays. Butterworth-Heinemann, 1990. DOI: 10.1016/C2013-0-00958-9

  9. Vigriyanov M.S., Salomatov V.V., Alekseenko S.V. Sposob bessazhnogo szhiganiya topliva [Method of massless combustion of fuel]. Patent RF no. 2219435, 2003. In Russ.

  10. Anufriev I.S., Baklanov A.M., Borovkova O.V., Vigriyanov M.S., Leshchevich V.V., Sharypov O.V. Investigation of soot nanoparticles during combustion of liquid hydrocarbons with injection of a superheated steam jet into the combustion region. Combustion, Explosion, and Shock Waves, 2017, vol. 53, no. 2, pp. 140–148. DOI: 10.1134/S0010508217020034

  11. Alekseenko S.V., Anufriev I.S., Vigriyanov M.S., Kopyev E.P., Sharypov O.V. Characteristics of diesel fuel combustion in a burner with injection of a superheated steam jet. Combustion, Explosion, and Shock Waves, 2016, vol. 52, no. 3, pp. 286–293. DOI: 10.1134/S0010508216030059

  12. Alekseenko S.V., Anufriev I.S., Vigriyanov M.S., Dulin V.M., Kopyev E.P., Sharypov O.V. Steam-enhanced regime for liquid hydrocarbons combustion: velocity distribution in the burner flame. Thermophysics and Aeromechanics, 2014, vol. 21, no. 3, pp. 393–396. DOI: 10.1134/S0869864314030123

  13. Alekseenko S.V., Anufriev I.S., Arsentiev S.S., Vigriyanov M.S., Kopyev E.P., Sharypov O.V. Effect of superheated steam parameters on combustion of liquid hydrocarbons. Thermophysics and Aeromechanics, 2019, vol. 26, no. 1, pp. 109–113. DOI: 10.1134/S0869864319010104

  14. Gad H.M., Ibrahim I.A., Abdel-baky M.E., Abd El-samed A.K., Farag T.M. Experimental study of diesel fuel atomization performance of air blast atomizer. Experimental Thermal and Fluid Science, 2018, vol. 99, pp. 211–218. DOI: 10.1016/j.expthermflusci.2018.07.006

  15. Yao C., Geng P., Yin Z., Hu J., Chen D., Ju Y. Impacts of nozzle geometry on spray combustion of high pressure common rail injectors in a constant volume combustion chamber. Fuel, 2016, vol. 179, pp. 235–245. DOI: 10.1016/j.fuel.2016.03.097

  16. Furuhata T., Kawata T., Mizukoshi N., Arai M. Effect of steam addition pathways on NO reduction characteristics in a can-type spray combustor. Fuel, 2010, vol. 89, no. 10, pp. 3119–3126. DOI: 10.1016/j.fuel.2010.05.018

  17. Vigriyanov M.S. Gorelochnoe ustrojstvo [Burner device]. Patent RF, no. 2450207, 2012. In Russ.

  18. Anufriev I.S., Kopyev E.P., Shadrin E.Y. Investigating characteristics of liquid hydrocarbon spraying by a steam jet. MATEC Web of Conferences. 2017, vol. 115, 05010. DOI: 10.1051/matecconf/201711505010

  19. Dryer F.L. Water addition to practical combustion systems – Concepts and applications. Symposium (International) on Combustion, 1977, vol. 16, pp. 279–295. DOI: 10.1016/S0082-0784(77)80332-9

  20. DIN EN 267:2011-11. Automatic forced draught burners for liquid fuels.

  21. https://www.weishaupt.de/

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI