The thermal state study of the external battery pack of a perspective nanosatellite


Аuthors

Sobolev D. D.*, Simakov S. P.**

Samara National Research University named after Academician S.P. Korolev, Samara, Russia

*e-mail: dim02sobolev15@gmail.com
**e-mail: simba1393@gmail.com

Abstract

The presented study performs assessment the thermal state of the external battery pack structural elements of the perspective nanosatellite. The module has an external unit which consists of a cover and a stand for batteries. The article considers various coating options of the block case. Such options as polished aluminum, white color enamel and black color enamel were selected. The assessment was conducted employing a set of mathematical models. The first model describes the nanosatellite’s center of masses movement relative to the coordinate system, associated with the Earth. The second mathematical model describes the orbital parameters of a nanosatellite relative to the direction vector to the Sun. The third mathematical model describes the thermal state of the structural elements, depending on the heat flows attributable to each design element. To validate the described above method the “Comsol Multiphysics” software is employed in this work. This package represents an integrated platform for modeling, including all the stages of modeling: from geometry creating, defining material properties and describing physical phenomena, to the solution customizing and the post-processing routine, which allows obtaining accurate and reliable results. The batteries’ temperature dependencies on time for three various coating options were obtained. The analysis that allowed selecting the option of black color enamel coating for the future working out was performed.

Keywords:

nanosatellite, thermal analysis, battery, mathematical model

References

  1. Gubin S.V., Burym I.G., Debeliy V.V. Otsenka osveshhennosti solnechnykh batarej molodezhnogo mikrosputnika [Evaluation of light and temperature solar array youth microsatellites]. Aviacionno-kosmicheskaya tekhnika i tekhnologiya —Aerospace Engineering and Technology, 2013, no. 1 (98), pp. 94–101. In Russ.

  2. Yoo J., Jin H., Seon J., Jeoang Y-H. Thermal analysis of TRIO-CINEMA Mission. J. Astron. Space Sci., 2012, no. 29(1), pp. 23–31.

  3. Corphino S., Caldera M., Nichele F. Thermal design and analysis of a nanosatellite in low earth orbit. Acta Astronautica, 2015, no.115, pp. 247–261.

  4. Mishin V.P. Mekhanika kosmicheskogo poleta [Space flight mechanics}. Moscow: Mashinostroenie, 1989. 408 p. In Russ.

  5. Atamasov V.D., Ermolaev V.I., Kukushkin I.O. Sistema obespecheniya teplovogo rezhima kosmicheskogo apparata [The system of ensuring the spacecraft thermal regime}. St. Petersburg: MO RF, 2003. 72 p. In Russ.

  6. Manturov A.I. Mekhanika upravleniya dvizheniem kosmicheskih apparatov [Mechanics of spacecraft motion control]. Samara: Publishing house of Samara National Research University, 2003. 62 p. In Russ.

  7. Belokonov V.M. Osnovy teorii poleta kosmicheskih apparatov [Fundamentals of the theory of spacecraft flight]. Samara: Publishing house of Samara National Research University, 2006. 77 p. In Russ.

  8. Bezruchko K.V. Raschet osveshchennosti i temperatury solnechnyh energoustanovok ISZ v usloviyah orbital’nogo poleta [Calculation of the illumination and temperature of the solar power plants of the satellite in orbital flight conditions]. Kharkiv: Publishing house of National Aerospace University named after. M. E. Zhukovsky «Kharkiv Aviation Institute», 1999. 65 p. In Russ.

  9. Rauschenbach H.S. Spravochnik po proektirovaniyu solnechnyh batarej [Solar cell array design handbook]. Moscow: Ehnergoatomizdat 1983. 360 p. In Russ.

  10. Baeva Yu.V. Metody rascheta radiacionngo teploobmena i teplovoj zashchity kosmicheskih teleskopov dlya nablyudeniya za Zemlej. Diss. cand. tech. nauk [Methods for calculating radiative heat transfer and thermal protection of space telescopes for observing the Earth. Cand. Diss.]. S.-Petrerburg, 2013. 16 p. In Russ.

  11. Semena N.P. Determination of spacecraft orientation by the temperature field analysis of its outer surface. Thermophysics and Aeromechanic, 2009, vol. 16, no. 1, pp. 129–140.

  12. Dul’nev G.N., Semyashkin E.N. Teploobmen v radioehlektronnyh apparatah [Heat transfer in electronic devices]. Leningrad: Energiya, 1968. 360 p. In Russ.

  13. Shlykov Yu.P., Ganin E.A. Kontaktnyj teploobmen [Contact heat transfer]. Moscow: Gosenergoizdat, 1963. 144 p. In Russ.

  14. Spacecraft systems engineering. Fortescue P., Swinerd.G, Stark J. (ed.). John Wiley & Sons, Ltd., 2011. 710 р.

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI