Density measurements of lunar internal heat by penetrating thermal probe


Аuthors

Dudkin K. K.*, Alifanov O. M.**

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

*e-mail: lord-konst@mail.ru
**e-mail: o.alifanov@yandex.ru

Abstract

The article considers the scheme of the buried thermal probe for determining the lunar heat flow density. The probe represents a rod, on which thermometers are fixed at certain intervals. The thermal probe is placed in a pre-drilled well. A certain time is needed for the probe-soil system reaches thermal equilibrium. After it measurements are starting. If the soil thermal conductivity is known, then it remains only to measure a series of temperature values at various depths, to obtain its differences and, according to Fourier's law, obtain the heat flow density. However, the question arises on what material the rod should be made of. If it is made of a material with high thermal conductivity, then, given the ultra-low thermal conductivity of the soil (λ = 0.001 – 0.03 W/m K), then the heat flow-over through the rod from the lower warmer part to the upper one would occur. And the upper part, in its turn, would transfer the heat to the adjacent sections of the soil. The soil in the upper layers around the rod will be locally heated, and this means that the thermometers will not show the real temperature drops corresponding to natural conditions, but the distorted ones. Thus, the rod material should be of the lowest possible thermal conductivity to minimize these distortions. Direct measurements on the lunar surface have already been carried out by NASA in the Apollo 15 and Apollo 17 missions according to this scheme. Following NASA, fiberglass is assumed in calculations as a rod material, due to its adequate strength for the set problems, and herewith a low thermal conductivity. Two calculations were performed to assess a temperature difference deviations while such thermal probe scheme application.

- For a homogeneous soil model, in which the soil thermal characteristics the are constant;

- For a multi-layer soil model, in which the soil thermal characteristics are changing with depth.

According to the results of numerical simulation for various soil models, a penetrating thermal probe gives errors in determining the heat flux from 13.8% to 18.5%. Summarizing, we can say that the penetrating thermal probe has good prospects for application in various scientific lunar exploration missions.

Keywords:

lunar soil, thermal flow density, thermal probe, Moon exploration

References

  1. Langseth, M.G., Keihm, S.J. In situ measurements of lunar heat flow. In: J.H. Pomeroy and N.J. Hubbard (eds.). The Soviet-American Conference on Cosmochemistry of the Moon and Planets, June 4-8, 1974, Moscow. NASA Special Publication 370, Part I, pp. 283–293.

  2. Tikhonova T.V., Troitskii V.S. Effect of heat from within the Moon on its radio emission for the case of lunar properties which vary with depth. Sov. Astron., 1969, vol. 13,no. 1, pp. 120–128.

  3. Shumakov N.V. Metod posledovatel’nykh intervalov v teplometrii nestatsionarnykh protsessov [The method of consecutive intervals in calorimetry of non-stationary processes]. Мoscow: Аtomizdat, 1979. 216 p. In Russ.

  4. Krotikov V.D., Troitskii V.S. Radio emission and nature of the Moon. Sov. Phys. Usp., 1964, vol. 6, pp. 841–871. DOI: 10.1070/PU1964v006n06ABEH003615

  5. Ivanov N.S. Metody izmereniya teplovykh potokov v gornykh porodakh. V kn.: Teplo i massoobmen v merzlykh pochvakh i gornykh porodakh [Methods for measuring heat fluxes in rocks. In the book: Heat and mass transfer in frozen soils and rocks]. Moscow: USSR Academy of Sciences, 1961, pp. 91–104. In Russ.

  6. Troitskii V.S. Results of an investigation of the Moon from its radiation characteristics. Radiophysics and Quantum Electronics, 1967, vol. 10, no. 9–10, pp 709–718. https://doi.org/10.1007/BF01031600

  7. Troitskii V.S., Tikhonova T.V. Thermal radiation from the moon and the physical properties of the upper lunar layer. Radiophysics and Quantum Electronics, 1970, vol. 13, no. 9, pp 981–1010. https://doi.org/10.1007/BF01032762

  8. Avduevsky B.C., Anfimov N.A., Marov M.Ya., Treskin Yu.A., Shalaev S.P., Ekonomov A.P. Teplofizicheskie svojstva lunnogo veshhestva, dostavlennogo na Zemlyu avtomaticheskoj stanciej “Luna-16”. V sb.: Lunny`j grunt iz Morya Izobiliya [Thermophysical properties of lunar matter delivered to Earth by the automatic station “Luna-16”. In Proc .: Lunar soil from the Sea of Plenty]. Moscow: Nauka, 1967. 624 p. In Russ.

  9. Hemingway B.S., Robie R.A., Wilson W.H. Specific heats of lunar soils, basalt, and breccias from the Apollo 14, 15 and 16 landing sites between 90 and 350°K. Proceed. of the 4 Lunar Science Conf. Pergamon Press. 1973. V. III. P. 2481–2488.

  10. Florensky K.P., Bazilevsky A.T., Nikolaeva O.V. Lunny`j grunt: svojstva i analogi. Model` 1974 goda [Lunar soil: properties and analogues. Model 1974]. Moscow: Vernadsky institute of geochemistry and analytical chemistry of Academy of Sciences of the USSR , 1975. 50 p. In Russ.

  11. Lykov A.V. Teoriya teploprovodnosti [Theory of heat conductivity]. Moscow: Vysshaya shkola, 1967. 600 p. In Russ.

  12. Dudkin K.K., Alifanov O.M. Izmereniya teplofizicheskikh kharakteristik lunnogo grunta v estestvenny`kh usloviyakh [Lunar regolith thermo-physical characteristics measuring in natural conditions]. Teplovye protsessy v tekhnike – Thermal Processes in Engineering, 2018, vol. 10, no. 5-6, pp. 245–255. In Russ.

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI