The presented work deals with the study of pressure gradient impact on heat exchange in the heat exchanger channel. The purpose of the study is techniques developing for efficiency improving of heat exchanger operation by pressure gradient employing. The task of the study consisted in determining the effect of the pressure gradient presence in on the heat exchange in the channels of the KMS-2 heat exchanger, including various working fluid properties (values of the Prandtl number: Pr = 0.702-0.723; Pr = 0.65-0.66; Pr = 0.73-0.79). Local and average heat transfer coefficient values in the presence of a longitudinal pressure gradient in the heat exchanger channel from the gas path side were studied applying numerical simulation (Red = 3000-6000; acceleration factor K = 8.04-10-6-1.56-10-5). The study was performed employing open license and open source software, such as Salome and Code_Saturne, by the RANS approach with k-w-sst turbulence model involvement. Modeling conditions were being set according to the manufacturer’s data for heat exchanger-heater of the KMS-2 type. Based on the obtained results of numerical simulation, it is given an estimate on pressure gradient impact on the heat exchange intensity for various working fluids, such as air, helium, carbon dioxide, in the channel of the upgraded heat exchanger.
SP 60.13330.2012. Otoplenie, ventilyatsiya i konditsion- irovanie vozdukha [Set of Rules 60.13330.2012. Heating, ventilation and conditioning]. Moscow: Minregion Rossii,
2012. 62 p.
SP 51.13330. Zashhita ot shuma [Set of Rules SP 51.13330 Sound protection]. Moscow: Minregion Rossii, 2011.46 p.
Davletshin I.A., Mikheev N.I., Molochnikov V.M. Heat transfer in a turbulent separation region with superimposed stream pulsations. Thermophysics and Aeromechanics, 2008, v. 15. no. 2, pp. 215-222.
Code_Saturne. URL: https://www.code-saturne.org/cms/. Date of contact 02.02.2018
SALOME Platform. URL: http://www.salome-plat-
form.org/. Date of contact 02.02.2018
Tanaka H., Kawamura H., Tateno A., S. Hatamiya S.
Effect of laminarization and retransmission on heat transfer for low Reynolds number flow through a converging to constant area duct. Journal of Heat Transfer, 1982, v. 104, pp. 363-371. DOI: https://doi.org/10.1115/1.3245097.
Luschik V. G, Reshmin A. Heat transfer enhancement in a plane separation-free diffuser. High Temperature, 2018, v. 56, no. 4, pp. 569-575. doi.org/10.31857/S004036440002725-1
Luschik V.G., Makarova M.S., Reshmin A.I Laminarization of flow with heat transfer in a plane channel with a con- fuser. Fluid Dynamics, 2019, v. 54, no. 1, pp. 67-76. |doi.org/10.1134/S0015462819010099
Luschik V.G., Makarova M.S., Medvetskaya N.V., Reshmin A.I. Chislennoe issledovanie techeniya i teploob- mena v ploskix kanalax peremennogo secheniya [Numerical investigation of flow and heat transfer in plane channels of va- liable section]. Teplovye protsessy v tekhnike — Thermal processes in engineering, 2019, v. 11, no. 9. pp. 386-394. In Russ.
Petrova N.P. Chislennoe issledovanie teploobmena v turbu-
lentnom pogranichnom sloe s vozdejstviyami [Numerical study of heat transfer in a turbulent boundary layer with effects // Science in modern society]. Nauka v sovremennom obshhestve. Materialy Mezhdunarodnoj nauchno-
prakticheskoj konferentsii [Science in modern society. Materials of the International scientific-practical conference]. Samara: CRI, 2017, pp. 56-62. In Russ.
Epik E.Ya. Vliyanie turbulentnosti i prodol’nogo gradienta davleniya na teploobmen v turbulentnom pogranichnom sloe [Effect of turbulence and longitudinal pressure gradient on heat transfer in a turbulent boundary layer]. Trudy 4 Ros- sijskoj natsional’noj konferentsii po teploobmenu [Proc. 4th Russian National Conference on Heat Transfer]. Moscow: Publishing house MPEI, 2006, v. 2, pp. 270-273. In Russ.
Petrova N.P., Tsynaeva A.A. Razrabotka i issledovanie kaloriferov s gradientnymi teploobmena [Design and study of exchangers with pressure gradient heat intensifiers]. Gmdostroitel’stvo i arkhitektura -Urban planning and architecture, 2018, v. 8, no. 3, pp. 137-144. In Russ.
Kalorifery KMS i KMB [KMS and KMB heaters]. Available at: http: //zao-tst.ru/kalorifery-kms-kmb.html (accessed 21.11.2019)
OnShape. Available at: https://www.onshape.com/ (date of treantment 01.02.2018)
Tsynaeva A.A., Nikitin M.N. Gidrodinamika i teploobmen v izognutom kanale pri nalozhennoj nestatsionarnosti poto- ka [Fluid dynamics and heat transfer in a curved channel with imposed unsteadiness of the flow]. Trudy Ака<1е- mehnergo — Transactions of Academenergo, 2017, no. 1, pp. 42-49. In Russ.
Tsynaeva A.A., Nikitin M.N. Chislennoe modelirovanie techeniya v kanale s neglubokimi lunkami s ispol’zovaniem
Code Saturne [Numerical modeling of rectangular channel with shallow dumbbell dimples based Code Saturne]. Trudy Instituta sistemnogo programmirovaniya RАN — Proceedings of ISP RAS, 2016, vol. 28, no. 1, pp. 185-196. In Russ. DOI: 10.15514/ISPRAS-2016-28( 1)-10
Tsynaeva A.A., Razorenov S.E., Belaya V.V. Chislennoe issledovanie teplootdachi v kanalakh s neglubokimi pod- kovoobraznymi lunkami [Numerical modeling of heat transfer of channel with shallow curly dimples]. Trudy Instituta sistemnogo programmirovaniya RАN — Proceedings of ISP RAS, 2017, vol. 29, no. 5, pp. 329-344. In Russ. DOI: 10.15514/ISPRAS-2017-29(5)-16
Zhukauskas A.A. Konvektivnyj perenos v teploobmenni- kakh [Convective transfer in heat exchangers]. Moscow: Nauka, 1982. 472 p. In Russ.
Vasilev F.V. Raschyotno-ehksperimental’noe issledovanie lokal’nykh i osrednyonnykh kharakteristik teplootdachi pri turbulentnom techenii teplonositelya v pryamykh, diffu- zornykh i konfuzornykh kanalakh. Diss. cand. techn. nauk [Calculation and experimental study of local and averaged heat transfer characteristics during turbulent flow of coolant in direct, diffuser and confuser channels. Ph. D. Diss.]. Bryansk, 1983. 223 p.
mai.ru — informational site of MAI Copyright © 2009-2024 by MAI |