Specifics of pyrotechnic actuators simulation


Аuthors

Bykov L. V.*, Yanyshev D. S.**

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

*e-mail: bykovlv@mai.ru
**e-mail: dyanishev@gmail.com

Abstract

Mathematical modeling of pyrotechnic drives gas dynamics is associated with the conjugate multifactor problem solution. Extraction of basic parameters, determining the ongoing proces­ses character, is necessary while solving this problem. Computational model should account for mathematical models of the combustion products and the rod movement of the pyrotechnic drive. The rod movement is determined from the balance equation of the forces acting on it. The conducted studies revealed that accounting for the thermal-physical properties variability of the working fluid plays one of the key roles while dynamics computing of the compressible flows. Evaluation of viscosity impact of the friction factor value at various Reynolds numbers for the cases of steady-state flows was performed. The error in viscosity factor determining in the case, when the temperature dependence was not accounted for, was of 300%-500% order for the temperature range under consideration, and the error in linear friction pressure loss determining decreased from 32% to 17% with Reynolds number within the range of laminar to fully turbu­lent flow. In real flow in the pyrotechnic drive, besides linear friction losses, active vortex, forming in the places of drastic flow changes, and transients are involved. Thus, the error in vis­cosity factor determining and, hence, not only mass-average, but also local Reynolds number, by which local turbulent characteristics are determined, may lead to the error in rod movement speed of the pyrotechnic actuator determining of 50%-100% order. The performed calculations of the pyrotechnic actuator rod dynamics yielded the results similar to the data obtained experi­mentally. Accounting for variable viscosity allowed obtaining the calculation results conformity with the experimental data within the 25%-30% range.

Keywords:

flow dynamics; numerical simulation; pyrotechnic actuator; dynamic charac¬teristics.

References

  1. Popov D.N. Mekhanika gidro- i pnevmoprivodov [Mecha­nics of hydraulic and pneumatic actuators]. Moscow: Bau­man Press, 2002. 320 p. In Russ.

  2. Gerts E.V. Pnevmaticheskie ustrojstva i sistemy v mashi- nostroenii. Spravochnik [Pneumatic devices and systems in mechanical engineering. Reference book]. Moscow: Mashi- nostroenie, 1981. 410 p. In Russ.

  3. Gamynin N.S. Gidravlicheskii privod sistem upravleniia [Hydraulic drive of control systems]. Moscow: Mashi- nostroenie, 1972. 376 p. In Russ.

  4. Chen K.S. A simplified model of TiH1.65/KCLO4pyrotechnic ignition. SANDIA REPORT SAND2009-1217, 2009. 32 p.

  5. Bykov L.V., Pravidlo M.N., Tikhonov K.M., Kholo­dov P.A. Modelirovanie gazovoj dinamiki pri srabatyvanii piroprivoda katapul’tnogo ustrojstva [Simulation of gas dy­namics of pyro actuator of catapult]. Teplovye protsessy v tekhnike — Thermal processes in engineering, 2014, vol. 6, no. 4, pp. 142-156. In Russ.

  6. Bykov L.V., Molchanov A.M., Shcherbakov M.A., Yanyshev D.S. Vychislitel’naya mekhanika sploshnykh sred v zadachakh aviatsionnoj i kosmicheskoj tekhniki [Compu­tational continuum mechanics in the problems of aviation and space technology]. Moscow: Lenand Ltd., 2015. 668 p. In Russ.

  7. Menter F.R. Zonal two equation k-w turbulence models for aerodynamic flows. AIAA Paper N93-2906, 1993. 21p.

  8. Molchanov A.M., Bykov L.V., Nikitin P.V., Dons- kikh V.V. Vliyanie ucheta vysokoskorostnoj szhimaemosti na rezul’taty rascheta sverkhzvukovykh turbulentnykh khimicheski reagiruyushhikh techenij [Influence of high­speed compressibility on results of calculation of supersonic turbulent chemically reacting flows]. Teplovye protsessy v tekhnike — Thermal processes in engineering, 2014, vol. 6, no. 5, pp. 202-213. In Russ.

  9. Sutherland W. The viscosity of gases and molecular force. The London, Edinburgh, and Dublin Philosophical Maga­zine and Journal of Science: Series 5, 1893, vol. 36, no. 223, pp. 507-531.

  10. Yanyshev D.S. Primenenie funktsii Lamberta v teorii turbu- lentnogo treniya [Implementation of Lambert function in theory ofturbulent friction]. Trudy MAI, 2012, No. 50. 11 p. In Russ.

  11. Yanyshev D.S., Bykov L.V. Model’ dinamiki pnevmati- cheskogo privoda i ee neopredelennosti [Gas actuator dyna­mics model and its equivocations]. Vestnik Moskovskogo aviatsionnogo instituta — Aerospace MAI Journal, 2014, Vol. 21, No. 4, pp. 87-92. In Russ.

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI