Tissue heating models identification based on non-contact measurements. Experimental study


Аuthors

Semenov D. S.1*, Nenarokomov A. V.2**, A.

1. Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia
2. ,

*e-mail: semenov_ds@icloud.com
**e-mail: nenarokomovav@mai.ru

Abstract

Tissue heating processes, such as laser hyperthermia of tumors or indirect heating near metal implants during MRI require special attention fr om the point of forecasting and control due to the risks of tissue injury and other side effects. Both the efficiency and the safety of the procedure or study depend on the temperature response to external influences. Mathematical modeling, which solves the problem of regulation and optimization, includes the accurate determination of the thermophysical and radiation-optical characteristics of the system. However, the identification of heat transfer models traditionally involves the placement of contact temperature sensors in the volume of the sample, which can be difficult when working with human tissues. Authors proposed a modified method for required parameters determining based on non-contact measurements and inverse heat transfer problem solving. The aim of this study was the experimental testing of the methodology for identifying a heat transfer model in a context of solving a task of planning laser hyperthermia of superficial tumors. A one­dimensional model of pulsed heating of the surface of an opaque sample under conditions of heat transfer with the environment at both its boundaries is considered. The developed experimental setup allows us to obtain input data for determining the discrepancy between the calculated and recorded temperatures. As part of this work, the heat transfer coefficient of an opaque material and the amplitude of the laser heat flux were restored. The proposed technique can be used to identify models of thermal processes, to regulate and optimize therapeutic effects, as well as to ensure safety in those cases wh ere tissue heating is not the target process.

Keywords:

heat transfer in biological tissues, inverse heat transfer problems, heat transfer simulation.

References

  1. Rossmann C., Haemmerich D. Review of temperature dependence of thermal properties, dielectric properties, and perfusion of biological tissues at hyperthermic and ablation temperatures. Crit Rev Biomed Eng., 2014, vol. 42, no. 6, pp. 467-492. https://doi.org/10.1615/critrev- biomedeng.2015012486

  2. Panych LP, Madore B. The physics of MRI safety. J. Magn. Reson. Imaging., 2018, vol. 47, no. 1, pp. 28-43. https://doi.org/10.1002/jmri.25761

  3. Kinsht N.V, Kinsht D.N. Hemodynamics and heat transfer in controlled whole-body hyperthermia: Modeling of pro­cesses. J. Eng. Phys. Thermophys., 2008, vol. 81, no. 6, pp. 1188-1197. https://doi.org/10.1007/s10891-009-0142-8

  4. Shulman Z.P, Khusid B.M, Fain I.V. Theoretical analysis of thermal processes in living biological tissue under local hyperthermia. II. Analysis of temperature fields in local SHF Hyperthermia with regrad for nonstationary nonlinear tissue perfusion. J. Eng. Phys. Thermophys., 1995, vol. 68, no. 3, pp. 367-373. https://doi.org/10.1007/BF00859050

  5. Alifanov O.M, Artjuhin E.A, Nenarokomov A.V. Obratnye zadachi v issledovanii slozhnogo teploobmena [Inverse problems in the study of complex heat transfer]. Moscow: Janus-K, 2009. 300 p. In Russ.

  6. Nenarokomov A.V, Semenov D.S, Dombrovskij L.A. Identifikacija matematicheskih modelej teploobmena s ispol’zovaniem beskontaktnyh izmerenij [Identification of heat transfer mathematical models based on non-contact measurements]. Teplovye protsessy v tekhnike — Thermal processes in engineering, 2018, v. 10, no. 7-8. pp. 354-360. In Russ.

  7. Luchakov Ju.I, Shabanov P.D. Perenos tepla v kozhe [Transport of heat through the skin]. Obzorypo klinicheskoj farmokologii i lekarstvennoj terapii — Reviews on Clinical Pharmacology and Drug Therapy, 2017, vol. 15, no. 1, pp. 68-71. In Russ. https://doi.org/10.17816/RCF15168-71

  8. Urakov A.L. Infrakrasnaja termografija i teplovaja tomografija v medicinskoj diagnostike: preimushhestva i ogranicheinja [Infrared thermography and thermal imaging in medical diagnostics: advantages and limitations]. Vestnik zdorov’e i obrazovanie vXXIveke — Bulletin «Health & education millennium», 2013, vol. 15, no. 11, pp. 45-51. In Russ.

  9. Alifanov O.M., Artuhin E.A., Rumyancev S.V.

  10. Ekstremal’nye metody resheniya nekorrektnykh zadach i ikh prilozheniya k obratnym zadacham teploobmena [Extreme methods for solving ill-posed problems and their applications to inverse heat transfer problems]. Moscow: Nauka, 1988. 287 p. In Russ.

  11. Alifanov O.M, Artjuhin E.A, Nenarokomov A.V. Iden- tifikatsiya matematicheskikh modelej slozhnogo teploob- mena [Identification of mathematical models of complex heat transfer]. Moscow. Publ. House MAI, 1999. 259 p. In Russ.

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI