Heating of anisotropic thermal protection coating spherical layer segment


Аuthors

Zarubin V. S.*, Leonov V. V.**, Zarubin V. S.

Bauman Moscow State Technical University, MSTU, 5, bldg. 1, 2-nd Baumanskaya str., Moscow, 105005, Russia

*e-mail: zarubin@bmstu.ru
**e-mail: lv-05@mail.ru

Abstract

While hypersonic flow-around of a spacecraft (SC) blunting in the form of a spherical sur­face section, the so-called shock layer with rather high values of pressure and air temperature emerges between the detached head wave front and the surface flown-around. It leads to the in­tensive convective and radiant heat transfer at the blunting surface even in conditions of high-al­titude flight in rarefied atmosphere layers.

The article presents setting and solution of the non-stationary thermal conductivity problem at nonaxisymmetric hypersonic flow-around of a spherical blunting segment of a SC nose cone. The thermal-protective layer material possesses the thermal conductivity anisotropy, characteri­zed by the thermal-conductivity coefficients ratio lengthwise and crosswise the layer. The tem­perature over the metal force shell of the nose cone is assumed uniform. The spherical segment heating process while SС letdown in the Earth atmosphere along the typical slide-down trajecto­ry with the fixed value of balancing angle of attack, close to the central semi-angle of the spherical segment, is considered. The problem of non-stationary heat transfer in the segment of the sphe­rical thermal-protective coating with its ideal thermal contact with metallic shell at given laws of variation in time and over the outer surface of coating the heat flow density, supplied to the this surface, possessing self-radiation, described by the Stefan-Boltzmann law. The article pre­sents the results of numerical solution of this problem applying explicit finite-difference scheme. Comparison of temperature distributions along the great-circle arc, passing through segment pole and through the critical point of heat flow density maximum at laminar mode of hypersonic flow-around of the coating outer surface from both anisotropic and isotropic mate­rials. The effect of temperature decrease in the critical point vicinity in case of material from anisotropic coating compared to the material from isotropic one was educed.

Keywords:

blunting hypersonic flow-around, spherical layer segment of thermal protection, thermal conductivity anisotropy of coating material, laminar flow-around mode.

References

  1. Osnovy teploperedachi v aviacionnoj i raketno-kosmi- cheskoj tekhnike. Pod red. V.S. Avduevskogo, V.K. Kosh­kina [Fundamentals of heat transfer in aviation and rocket- space technologies. Ed. V.S. Avduevsky, V.K. Koshkin]. Moscow: Mashinostroyeniye, 1992. 624 p. In Russ.

  2. Osnovy indentifikaciii proektirovaniya teplovyh processov i system [Fundamentals of identification and design of thermal processes and systems] Moscow: Logos, 2001. 400 p. In Russ.

  3. Nikitin P.V. Teplovayazashchita [Thermal protection]. Moscow: Publishing house of the Moscow Aviation Insti­tute, 2006. 512 p. In Russ.

  4. Surzhikov S.T. Raschyotnoe issledovanie aerotermo- dinamiki giperzvukovogo obtekaniya zatuplennykh tel na primere analiza eksperimental’nykh dannykh [Com­putational study of the aerothermodynamics of hypersonic flow around blunt bodies using an example of an analysis of experimental data]. Moscow: Ishlinsky Institute for Problems in Mechanics RAS, 2011. 192 p. In Russ.

  5. Ryzhov Y.A., Nikitchenko Y.A., Popov S.A. A hybrid model of hypersonic flow. Russian Aeronautics, 2015, vol. 58, no. 1, pp. 30-36.

  6. Leonov V.V., Grishko D.A. Estimates of the trajectory pa­rameters and thermal loads for a ballistic capsule returning from the Moon with multiple dives into the Earth atmosphere. Journal of Engineering and Applied Sciences, 2019, vol. 14, no. 6, pp. 1775-1780. DOI: 10.36478/ jeasci.2019.1775.1780

  7. Formalev V.F., Kolesnik S.A., Selin I.A.

  8. sopryazhennom teploobmene pri aerodinamicheskom nagreve anizotropnyh tel s vysokoj stepen’yu anizotropii [About coupled heat exchange in a case of aerodynamic heat of bodies with high degree of anisotropy]. Teplovyye protsessy v tekhnike — Thermal processes in engineering, 2016, vol. 8, no. 9, pp. 388-394. In Russ.

  9. Komkov M.A., Tarasov V.A. Tekhnologii namotki kompozitnykh konstruktsij raket i sredstv porazheniya. [Tech­nology for winding composite structures of missiles and weap­ons]. Moscow: Publishing house of Bauman Mos­cow State Technical University, 2015. 432 p. In Russ.

  10. Urazbakhtin F.A., Kharinova Y.Y., Urazbakhtina A.Y. Optimization of forming parameters for fiberglass shells of rocket nose cones by a criticality criterion. Russian Aeronautics, 2017, vol. 60, no.1, pp. 141-149.

  11. Zarubin V.S., Kuvyrkin G.N., Savelyeva I.Yu. Teploprovodnost’ voloknistykh kompozitov. Vyvod, otsenka dostovernosti i parametricheskij analiz raschetnykh formul [Thermal conductivity of fibrous composites. Conclusion, reliability assessment and parametric analysis of calculation formulas]. Saarbrucken (Deutschland): LAP LAMBERT Academic Publishing, 2013. 128 p. In Russ.

  12. Zarubin V.S., Sergeeva E.S. Application of mathematical modeling to determine the thermoelastic characteristics of nano-reinforced composites. Mathematical Models and Computer Simulations. 2018, vol. 10, no. 3, pp. 288-298. DOI: 10.1134/S2070048218030134

  13. Formalev V.F. Heat and mass transfer in anisotropic bodies // High Temperature. 2001. V. 39. Iss. 5. P. 753-774.

  14. Formalev V.F. Teploprovodnost’ anizotropnyh tel. Anali- ticheskie metody resheniya zadach [Thermal conductivity of anisotropic bodies. Analytical methods for solving problems]. Moscow: Fizmatlit, 2014. 312 p. In Russ.

  15. Formalev V.F. Teploperenos v anizotropnyh tvyordyh telah. Chislennye metody, teplovye volny, obratnye zadachi [Heat transfer in anisotropic solids. Numerical methods, heat waves, inverse problems]. Moscow: Fizmatlit, 2015. 280 p. In Russ.

  16. Zarubin V.S., Zarubin Jr. V.S., Leonov V.V. Nerav- nomernyj nagrev poverkhnosti anizotropnogo sharovogo sloya [Uneven surface heating of anisotropic spherical layer]. Teplovyye protsessy v tekhnike — Thermal processes in engineering, 2019, vol. 11, no. 3, pp. 115-123. In Russ.

  17. Zarubin V.S., Leonov V.V., Zarubin Jr. V.S. Tempe- raturnoe sostoyanie anizotropnogo sharovogo sloya pri konvektivnom teploobmene s okruzhayushhej sredoj [Tem­perature state of the anisotropic spherical layer during convective heat exchange with the environment]. Vestnik MGTU im. N.E. Baumana. Ser. Estestvennye nauki — Herald of the Bauman Moscow State Technical University. Series Natural Sciences, 2019, no. 4, pp. 40-55. In Russ.

  18. Zarubin V.S., Leonov V.V., Zarubin V.S. Jr. Heating of an anisotropic insulation layer with hypersonic flow past a spherical blunting. Russian Aeronautics, 2019, vol. 62, no. 1, pp. 81-88. DOI: 10.3103/S1068799819010112

  19. Shevelev Yu.D., Syzranova N.G. Vliyanie khimicheskikh reaktsij na teploperedachu v pogranichnom sloe [The effect of chemical reactions on heat transfer in the boundary layer]. Fiziko-khimicheskaya kinetika v gazovoj dinamike — Physical-Chemical Kinetics in Gas Dynamics, 2010, vol. 10, no. 2, pp. 91-126. In Russ.

  20. Reviznikov D.L., Sukharev T.Yu. Giperzvukovoe obteka- nie zatuplennykh tel v usloviyakh atmosfery Zamli i Marsa. Sravnitel’nyj analiz matematicheskikh modelej [Hypersonic flow-around of blunted bodies in conditions of Earth and Mars atmosphere. Comparative analysis of mathematical models]. Teplovyye protsessy v tekhnike — Thermal processes in engineering, 2018, vol. 10, no. 1-2, pp. 5-15. In Russ.

  21. Kosmicheskie apparaty. Pod obshh. red. K.P. Feoktistova [Spacecraft. Ed. K.P. Feoktistov]. Moscow: Voenizdat, 1983. 319 p. In Russ.

  22. Reznik S.V. Materialy i pokrytiya v ekstremal’nykh uslo- viyakh. Vzglyad v budushhee: T. 2. Peredovye tekhnologii proizvodstva [Materials and coatings in extreme conditions. A look into the future. V. 2. Advanced production techno­logy]. Moscow: Publishing house of Bauman Moscow State Technical University, 2002. 294 с. In Russ.

  23. Bogachev E.A., Mikhailovsky K.V., Prosuntsov P.V., Reznik S.V., Taraskin N.Yu. Skhema teplozashhitnogo pokrytiya mnogorazovogo teplovogo shhita spuskaemogo apparata dlya vozvrashheniya s nizkoj okolozemnoj orbity [Scheme of the heat-shielding coating of the reusable heat shield of the descent vehicle for returning from low Earth orbit]. Patent RF, no. RU 173721 U1, 2017.

  24. Bogachev E.A., Mikhailovsky K.V., Prosuntsov P.V., Reznik S.V., Taraskin N.Yu. Skhema teplozashhitnogo pokrytiya mnogorazovogo teplovogo shhita spuskaemogo apparata dlya vozvrashheniya posle polyota k Lune [Scheme of a heat-shielding coating of a reusable heat shield of a descent vehicle for returning after a flight to the Moon]. Patent RF, no. RU 175034 U1, 2017.

  25. Samarsky A.A., Vabishchevich P.N. Vychislitel’naya teploperedacha [Computational heat transfer]. Moscow: Editorial URSS, 2003. 784 p. In Russ.

  26. Vlasova E.A., Zarubin V.S., Kuvyrkin G.N. Priblizhennye metody matematicheskoj fiziki [Approximate methods of mathematical physics]. Moscow: Publishing house of Bauman Moscow State Technical University, 2001. 700 p. In Russ.

  27. Galanin M.P., Savenkov E.B. Metody chislennogo analiza matematicheskikh modelej [Methods of numerical analysis of mathematical models]. Moscow: Publishing house of Bauman Moscow State Technical University, 2018. 592 p. In Russ.

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI