Methodology for calculating the temperature distribution over the cross section of the turbine blade made of heat-resistant nickel-based alloy


Аuthors

Ratenko O. A.

Moscow State Technical University of Civil Aviation, 20, Kronshtadskiy Bulvar, Moscow, 125993, Russia

Abstract

Turbine blades made of heat-resistant nickel-based alloys are subjected to microstructural changes due to high temperatures. Microstructural changes that have a significant impact on the blade material’s durability include coarsening and growth of the particles of main hardening y’-phase. Due to high cost of the turbine blades replacement, the main challenge is to evaluate the alloy microstructure changes caused by high temperatures exposure. The paper presents a methodology for calculating the temperature distribution over the cross section of the turbine blade of a gas turbine engine, which allows to determine the temperature of the material of the blade at any point of the blade cross section and to predict changes in microstructure caused bytransformation of y’-phase.

Keywords:

heat-resistant nickel-based alloys, turbine blades, y'-phase, microstructural change, coagulation.

References

  1. Logunov A.V. Zharoprochnye nikelevye splavy dlya lopa- tok i diskov gazovykh turbin [Heat resistant nickel alloys for gas turbine blades and discs]. Moscow: Moskovskie ucheb- niki, 2018. 590 p. In Russ.

  2. Kablov E.N. Litye lopatki gazoturbinnykh dvigatelej [Gas turbine cast blades]. Moscow: Nauka, 2006. 632 p. In Russ.

  3. Duhl M.G.D., Giamei A.F. The development of single crystal superalloy turbine blades. Superalloys, Warrendale, 1980, pp. 205-2014.

  4. Pollock T.M., Tin S. Nickel-based superalloys for ad­vanced turbine engines: chemistry, microstructure, and pro­perties. J. Propul. Power, 2006, vol. 22, no. 2, pp. 361-374.

  5. Reed R.C. The Superalloys: Fundamentals and Applica­tions, New York: Cambridge University press, 2008. 372 p.

  6. Wood M.I., Raynor D. Condition assessment techniques for degraded gas turbine superalloy materials. Int. J. Pres. Ves. Pip. 1996, vol. 66, no. 1-3, pp. 341-350. https://doi.org/ 10.1016/0308-0161(95)00108-5

  7. Wood M.I Gas turbine hot section components: the chal­lenge of ‘residuallife’ assessment. Proc. IME J. Power Energy, Part A, 2000, vol. 214 (3), pp. 193-201.

  8. Tong J.Y., Ding X.F., Wang M.L., Zheng Y.R., Yagi K., Feng Q. Evaluation of a serviced turbine blade made of GH4033 wrought superalloy. Mater. Sci. Eng.: A,_ 2014, vol. 618, pp. 605-613. https://doi.org/10.1016/ j.msea.2014.09.025

  9. Zhao X., Dang Y., Yin H., Yuan Y., Lu J., Yang Z.,

  10. Gu Y. Evolution of the microstructure and microhardness of a new wrought Ni-Fe based superalloy during high tempera­ture aging. J. Alloys Compd., 2015, vol. 644, pp. 66-70. https: //doi.org/ 10.1016/j.j allcom.2015.04.184

  11. Epishin A., Link T., Nazmy M., Staubli M., Klingelhoffer H., Nolze G. Microstructural degradation of CMSX-4: kinetics and effect on mechanical properties. Conference: Superalloys 2008, 2008, pp. 725-731. DOI: 10.7449/2008/Superalloys_2008_725_731

  12. Leidermark D., Moverare J.J., Johansson S., Simons- son K., Sjostrom S. Tension/compression asymmetry of a single-crystal superalloy in virgin and degraded condition. Acta Mater. 2010, vol. 58, no. 15, pp. 4986-4997. https://doi.org/10.1016/j.actamat.2010.05.032

  13. Wang C., Guo Y., Guo J., Zhou L. Microstructural chang­es and their effect on tensile properties of a Ni-Fe based al­loy during long-term thermal exposure. Mater. Sci. Eng.: A, 2016, vol. 670, pp. 178-187. https://doi.org/10.1016/ j.msea.2016.06.018

  14. Ou M., Ma Y., Ge H., Xing W., Zhou Y., Zheng S.,

  15. Liu K. Microstructure evolution and mechanical properties of a new cast Ni-base superalloy with various Ti contents. J. Alloys Compd., 2018, vol. 735, pp. 193-201. https://doi.org/ 10.1016/j .jallcom.2017.11.074

  16. Tong J.Y., Yagi K., Zheng Y.R., Feng Q. Microstructural degradation and its corresponding mechanical property of wrought superalloy GH4037 caused by very high tempera­ture. J. Alloys Compd., 2017, vol. 690, pp. 542-552. https://doi.Org/10.1016/j.jaUcom.2016.08.081

  17. Cervellon A., Cormier J., Mauget F., Hervier Z. VHCF life evolution after microstructure degradation of a Ni-based single crystal superalloy. Int. J. Fatig., 2017, vol. 104, pp. 251-262. https://doi.org/10.1016/j.ijfatigue.2017.07.021

  18. Caron P., Henderson P.J., Khan T., McLean M. On the effects of heat treatments on the creep behavior of a single crystal superalloy. Scripta Metallurgica, 1986, vol. 20, no. 6, pp. 875- 880. https://doi.org/10.1016/0036-9748(86)90458-8

  19. Maccagno T.M., Koul A.K., Immarigeon J.P., Cutler L., Allem R., L’esperance G. Microstructure, creep properties, and rejuvenation of service-exposed alloy 713C turbine blades. Metall. Trans. A, 1990, vol. 21, no. 12, pp. 3115­3125. https://doi.org/10.1007/BF02647308

  20. Kim I.S., Choi B.G., Hong H.U., Do J., Jo C.Y. Influence of thermal exposure on the micro structural evolution and mechanical properties of a wrought Ni-base superalloy. Mater. Sci. Eng.: A, 2014, vol. 593, pp. 55-63. https://doi.org/ 10.1016/j.msea.2013.11.031

  21. Kazanskii D.A. Development of reliability criteria for rotor blades and guide vanes of contemporary gas turbines. Pow­er Technology and Engineering, 2012, vol. 46, no. 2, pp. 149-152. DOI: 10.1007/s10749-012-0323-z

  22. Kirikov S.V., Perevezentsev V.N., Tarasenko Yu.P. Ат^ morfologicheskikh kharakteristik intermetallidnoj fazy v zharoprochnykh nikelevykh splavakh [Morphological characteristics of the intermetallic phase of heat resisting nickel alloys]. Vestnik Samarskogo universiteta. Аehro- kosmicheskaya tekhnika, tekhnologii i mashinostroenie — VESTNIK of Samara University. Aerospace and Mechanical Engineering, 2016, vol. 15, no. 4, pp. 216-223. http://dx.doi.org/10.18287/2541-7533-2016-15-4-216-223

  23. Yong-sheng Fan, Wei-qing Huang, Xiao-guang Yang, Duo-qi Shi, Shao-lin Li. Mechanical properties deteriora­tion and its relationship with microstructural variation using small coupons sampled from serviced turbine blades. Mater. Sci. Eng.: A, 2019, vol. 757, pp. 134-145. https://doi.org/ 10.1016/j.msea.2019.04.100

  24. Farlow S.J. Partial Differential Equations for Scientists and Engineers. Wiley, New York, 1982. (Russ ed.: Farlow S.J. Uravneniya s chastnymi proizvodnymi dlya nauchnykh rabotnikov i inzhenerov. Moscow: Mir, 1985. 384 p.).

  25. Kryilov V.I., Bobkov V.V., Monastyirnyiy P.I Nachala teorii vychislitel’nykh metodov.Uravneniya v chastnykhpro- izvodnykh [Foundations of the computational methods theo­ry. Equations in partial derivatives.]. Minsk: Nauka i tekhnika, 1986. 311 p. In Russ.

  26. Marchuk G.I. Metody vychislitel’noj matematiki [Methods of calculus mathematics]. Moscow: Nauka. Glavnaya redaktsiya fiziko-matematicheskoj literatury, 1980. 456 p. In Russ.

  27. Berkovsky B.M., Nogotov E.F. Raznostnye metody issle- dovaniya zadach teploobmena [Differencing methods of studying the problems of heat transfer]. Minsk: Nauka i tekhnika, 1976. 144 p. In Russ.

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI