Data generalization by critical thermal load at subcooled water boiling in a pipe with twisted tape


Аuthors

Komendantov A. S.1, Krug A. F.2, Kuzma-Kichta Y. A.1*, Stenina N. A.2

1. National Research University “Moscow Power Engineering Institute”, 14, Krasnokazarmennaya str., Moscow, 111250 Russia
2. Moscow Power Engineering Institute (National Research University), 14, Krasnokazarmennaja St., Moscow, 111250, Russia

*e-mail: kuzma@itf.mpei.ac.ru

Abstract

The available dependencies do not allow determine precisely and reliably the critical thermal load in a pipe with twisted tape due to their obtaining in a restricted parameters range. The pur- pose of the presented work consists in data generalization by critical thermal load at the sub- cooled water boiling in a pipe with twisted tape, and developing a look-up table of critical ther- mal loads for the swirled flow similar to the look-up tables of critical thermal loads for a straight-line flow. The same technique is assumed to be implemented as the one employed while creating skeleton tables by critical thermal loads in the case of straight-line water flow in a pipe. The values of critical thermal load in the table reference points will be obtained by the generalized equation, which describes the created experimental data array by the critical thermal load while subcooled water band-shaped swirling, and accounts for the thermal exchange crisis specifics of the twisted flow. Based on the gathered data array the equation for calculating the critical thermal load in the twisted water flow at x < 0 was obtained in this work. This equation was upgraded by the additional criteria introduction, which allows its employing in a wider pa- rameters range. The final equation represents the dependency of the boiling number for the twisted liquid flow on

— the Weber and Peclet numbers;

— dimensionless pressure;

— dimensionless diameter;

— dimensionless coefficient, accounting for the effect of the length of the segment being heated;

— vapor quality function.

The proposed equation generalizes 85% of the values (494 from 580) of the collected data array by the critical thermal load at the subcooled water flow swirling within the ranges of:

— pressures from 0.1 to 13.8 MPa;

— mass velocities from 200 to 33,000 kg/m2s;

— steam content from —0.46 to 0;

— the tape swirling rate y(180°) from 1 to 12.3;

— the length of the heated segment from 0.9 to 88.2;

— the pipe diameter from 1.6 to 18 mm with ±30% deviation.

The obtained equation will be employed for creating a table by the critical thermal loads for the swirled flows similar to the one created for the straight-line flows. The table for the critical thermal loads at the subcooled water flow swirling in a pipe can be employed while new nuclear and fusion-type reactors design. The obtained results will be widely employed in engineering.

Keywords:

data generalization, critical heat flux, boiling of subcooled water, tube with twisted tape, swirled flow, equation for critical heat flux, development of tables for critical heat flux, new nuclear and fusion reactors.

References

  1. Doroshchuk V.E., Lantsman F.P., Levitan L.L. Issle-dovanie krizisa teploobmena v krugloj trube priravnomernom teplovydelenii [Study of the heat transfer crisis in a round pipe with uniform heat dissipation]. Teploehnergetika — Thermal Engineering, 1975, no. 12, pp. 66–70. In Russ.

  2. Razrabotka rekomendatsij po raschetu krizisa teplootdachi pri kipenii vody v kruglykh trubakh [Development of rec- ommendations for calculating the heat transfer crisis during boiling water in round pipes]. Preprint Institute for High Temperature of Academy of Sciences of the USSR, no. 1–57. Moscow, 1980. 67 p. In Russ.

  3. Groneveld D.C., Leung L.K.H., Kirillov P.L., Bobkov V.P., Smogalev L.P., Vinogradov V.N., Huang X.C., Roger E. The 1995 look-up-table for critical heat flux in tubes. Nu- clear Engineering and Design. 1996, vol. 163, no. 1–2, pp. 1–23. https://doi.org/10.1016/0029-5493(95) 01154-4

  4. Groeneveld D.C., Shan J.Q., Vasic A.Z., Leung L.K.H., Durmayaz A., Yang J., Cheng S.C., Tanase A. The 2006 CHF look-up table. Nuclear Engineering and Design, 2007, vol. 237, no. 15–17, pp. 1909–1922. https://doi.org/10.1016/ j.nucengdes.2007.02.014

  5. Kirillov P.L., Terentyeva M.I. Skeletnye tablitsy po raschetu kriticheskogo teplovogo potoka v trubakh dlya vody. Istoriya i versiya 2006 g. [Skeletal tables for calcula- ting the critical heat flux in water pipes. History and version of 2006]. Аtomnaya tekhnika za rubezhom — Nuclear tech- nology abroad, 2008, no. 10, pp. 3–18. In Russ.

  6. Leont’ev A.I., Kuzma-Kichta Y.A., Popov I.A. Heat and mass transfer and hydrodynamics in swirling flows (review). Thermal Engineering, 2017, vol. 64, no. 2, pp. 111–126.

  7. Dzyubenko. B.V., Kuzma-Kichta Yu.A., Leontyev A.I., Fedik I.I., Kholpanov L.P. Intensifikatsiya teplo- i massoob- mena na makro-, mikro- i nanomasshtabakh [Intensification of heat and mass transfer at macro-, micro- and nanoscale]. Mos- cow: TSNIIАTOMINFORM, 2008. 532 p. In Russ.

  8. Krug A.F., Kuzma-Kichta Yu.A., Komendantov A.S. Generalization of data on critical heat fluxes for flow swirled using a tape. Thermal Engineering, 2010, Vol. 57, no. 3, pp. 232–237.

  9. Bergles A.E., Krug A.F, Kuzma-Kichta Yu.A., Komendantov A.S., Fedorovich E.D. Intensifikatsiya tep- loobmena v zakruchennykh kipyashhikh potokakh. Chast’ 1. Intensifikatsiya teploobmena v zakruchennykh s pomoshh’yu lenty kipyashhikh potokakh [Heat transfer en- hancement in twisted boiling flows. Part 1. Heat transfer enhancement in flows twisted by tape]. Teplovye protsessy v tekhnike — Thermal processes in engineering, 2010, Vol. 2, no. 7, pp. 24–30. In Russ.

  10. Bergles A.E., Krug A.F., Kuzma-Kichta Yu.A., Komendantov A.S. Intensifikatsiya teploobmena v zakru- chennykh kipyashhikh potokakh. CHast’ 2. Obobshhenie dannykh po kriticheskim teplovym nagruzkam pri zakrutke potoka c pomoshh’yu lenty [Heat transfer enhancement in twisted boiling flows. Part 2. Generalization of critical heat flux data at swirling of flow with tape]. Teplovye protsessy vtekhnike — Thermal processes in engineering, 2010, Vol. 2, no. 8, pp. 35–39. In Russ.

  11. Bergles A.E., Krug A.F., Kuzma-Kichta Yu.A., Komen- dantov A.S., Fedorovich E.D. Intensifikatsiya teploo- bmena v zakruchennykh kipyashhikh potokakh. Chast’ 3 [Heat transfer enhancement in twisted boiling flows. Part 3]. Teplovye protsessy v tekhnike — Thermal processes in engi- neering, 2010, Vol. 2, no. 10, pp. 442–460. In Russ.

  12. Bergles A.E., Krug A.F., Kuzma-Kichta Yu.A., Komen- dantov A.S., Fedorovich E.D. Intensifikatsiya teploo- bmena v zakruchennykh kipyashhikh potokakh. Chast’ 4 [Heat transfer enhancement in twisted boiling flows. Part 4]. Teplovye protsessy v tekhnike — Thermal processes in engi- neering, 2010, Vol. 2, no. 11, pp. 498–506. In Russ.

  13. Bergles A.E., Kuzma-Kichta Yu.A. Heat transfer in swirled boiling flows. Teplovye protsessy v tekhnike — Thermal processes in engineering, 2009, Vol. 1, no. 12, pp. 536–549.

  14. Kuzma-Kichta Yu.A. Metody intensifikatsii teploobmena na makro-, mikro- i nanomasshtabakh [Methods of heat transfer intensification on macro, micro and nanoscale]. Moscow: Publ. House of MPEI, 2013. 124 p. In Russ.

  15. Krug A.F. Issledovanie krizisa teploobmena v trube s zakruchennoj lentoj. Diss. cand. tekhn. Nauk. [Study of heat transfer crisis in a tube with a swirling tape. Cand. Diss.]. Moscow, 2013.

  16. Krug A.F., Kuzma-Kichta Yu.A., Commandants A.S., Vasilyeva L.T. O nachal’nom termicheskom uchastke pri krizise teploobmena v zakruchennykh potokakh [On the ini- tial thermal section during a heat transfer crisis in swirling flows]. Trudy shestoj Rossijskoj natsional’noj konferentsii po teploobmenu (RNKT-6) [Abstracts of the Sixth Russian National Conference on Heat Transfer (RNKT-6)]. Moscow: 2014, pp. 53–54. In Russ.

  17. Krug A.F., Kuzma-Kichta Yu.A., Komendantov A.S., Vasilyeva L.T., Stenina N.A. Razrabotka uravneniya dlya rascheta kriticheskoj teplovoj nagruzki v zakruchennom potoke vody s ispol’zovaniem bezrazmernykh kriteriev [De- velopment of equations for calculation of critical heat loads in a swirling water flow with use of dimensionless criteria]. Ehnergosberezheniya i vodopodgotovka — Energy Saving and Water Treatment, 2016, no. 3, pp. 30–37. In Russ.

  18. Dzyubenko B.V., Kuzma-Kichta Yu.A., Leontiev A.I., Fedik I.I., Kholpanov L.P. Intensification of heat and mass transfer on macro-, micro-, and nanoscales. U.S.: Be- gell House Publishers Inc., 2016. 630 p.

  19. Leontiev A.I., Alekseenko S.V., Volchkov E.P., Dzyuben- ko V.B., Dragunov Yu.G., Isaev S.A., Koroteev A.A., Kuz- ma-Kichta Yu.A., Popov I.A., Terekhov V.I. Vikhrevye tekhnologii dlya ehnergetiki [Vortex technologies for ener- gy]. Moscow: Publ. House of MPEI, 2017. pp. 120–127. In Russ.

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI