A reliable spacecraft orientation system is one of the main design tasks without which most missions cannot be performed. This circumstance imposes certain criteria on the development of the orientation system of vehicles in outer space. For a reliable control of the current orienta- tion a combined system of the orientation, sensor redundancy and backup systems are used. A combined system usually includes solar sensors and magnetometers for small satellites CubSat. The purpose of this paper is the analysis of the possibility to elaborate a backup or replacement orientation system for a spacecraft. This system uses radiation heat flux sensors based on the inverse problems methodology. It can be used for verification or correction of the angular orien- tation of the vehicle.
Unfortunately, in majority of practical situations the direct measurements of heat flux are problematic. These difficulties can be overcome with the use of some indirect thermal measu- rements combined with an inverse problem technique. The problem of retrieval of the angular orientation of a spacecraft demands to solve two inverse problems sequentially. The first one is the estimating of heat fluxes absorbed by spacecraft surface. The second one is the determining of angles of orientation based on the estimated values of radiative heat fluxes.
Konstantinov M.S., Kamenkov E.F., Perelygin B.P., Bezverby V.K. Mekhanika kosmicheskogo poleta. Pod red.
V.P. Mishina [Space flight mechanics. Ed. V.P. Mishin]. Moscow: Mashinostroenie, 1989. 408 p. In Russ.
Gritsevich I.V., Nenarokomov A.V. Opredelenie vneshne- go teplovogo vozdejstviya na poverkhnost’ orbital’nogo kosmicheskogo apparata [Determination of external heat fluxes on surface of an orbital spacecraft]. Teplovye protsessy v tekhnike — Thermal processes in engineering, 2013, vol. 5, no. 10. pp. 445–457. In Russ.
Osnovy teploperedachi v aviatsionnoj i raketno- kosmicheskoj tekhnike. Pod obshh. red. V.S. Аvduevskogo,
V.K. Koshkina [The basics of heat transfer in aviation and space-rocket hardware. Eds. V.S. Avduevsky, V.K. Koshkin]. Moscow: Mashinostroenie, 1992, 528 p. In Russ.
Modelirovanie teplovykh rezhimov kosmicheskogo apparata i okruzhayushhej ego sredy. Pod red. akad. G.I. Petrova. [Modeling the thermal conditions of the spacecraft and its environment. Ed. G.I. Petrov]. Moscow: Mashinostroenie, 1971. 382 p. In Russ.
Malozemov V.V., Rozhnov V.F., Pravetskiy V.N. Sistemy
zhizneobespecheniya ekipazhej letatel’nykh apparatov [Life
support systems for aircraft crews]. Moscow: Mashi- nostroenie, 1986. 584 p. In Russ.
Favorsky O.N., Kadaner Ya.S. Voprosy teploobmena v kosmose [Heat transfer issues in space]. Moscow: Vysshaya shkola, 1967. 248 p. In Russ.
Malozemov V.V. Teplovoj rezhim kosmicheskikh apparatov [Thermal conditions of spacecraft]. Moscow: Mashi- nostroenie, 1980. 232 p. In Russ.
Adrianov V.N. Osnovy radiatsionnogo i slozhnogo teplo- obmena [Fundamentals of radiation and complex heat trans- fer]. Moscow: Energiya. 1972. 464 p. In Russ.
Zaletaev V.M. K raschetu sobstvennogo izlucheniya Zemli na kosmicheskij apparat [To the calculation of the Earth’s own radiation on a spacecraft]. Kosmicheskie issledovaniya
Cosmic Research, 1968, vol. 6, no. 6, pp. 897–903. In Russ.
Formalev V.F., Reviznikov D.L. Chislennye metody [Nu- merical methods]. Moscow: FIZMАTLIT, 2004. 400 p. In Russ.
Tikhonov A.N., Arsenin V.Y. Solution of Ill-posed Prob- lems. New York, Toronto, London, Sydney: John Wiley and Sons, 1977. 258 p.
Alifanov O.M., Inverse Heat Transfer Problems. Berlin: Springer-Verlag, 1994. 360 p.
mai.ru — informational site of MAI Copyright © 2009-2024 by MAI |