Magneto-hydrodynamic computation of thermally and chemically non-equilibrium flows


Аuthors

Molchanov A. M.*, Akimov D. V., Kurashov A. A.

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

*e-mail: alexmol_2000@mail.ru

Abstract

The article proposes numerical technique for ionized high-speed flow computing in condi- tions of thermal and chemical non-equilibrium, accounting for interaction of moving electrically conductive continuous medium with electromagnetic field. It pays special attention to electrical conductivity computing of such gas based on the analysis of molecules collisions integrals and thermal motion of electrons. Ionized high-speed flows are described by a fully coupled system of equations, which includes the equations of continuity, momentum, total energy, rotational energy, vibrational energy, electron energy, and mass conservation of chemical components. Electrical conductivity is determined through the kinetic theory. In addition to the basic transport equations, the developed mathematical model includes energy exchange mechanisms such as translational-electron energy transfer, electron-vibrational energy transfer, translational- rotational energy transfer, translational-vibrational energy transfer, vibrational-vibrational ener- gy transfer, as well as electromagnetic field computing and chemical kinetics. The developed method was being employed for numerical simulation of interaction physics of magnetic field with ionized flow such as:
1) Ram-C flight experiment;
2) Zeimer experimental studies in magneto-electrodynamics;
3) Flow acceleration at the scramjet outlet.
Computational results obtained with the suggested technique agree satisfactory with the ex- perimental data and computational results obtained by other authors. The article demonstrates the distance fr om the head shock wave to the forward critical point increases under the impact of the magnetic field. Since the magnetic force tends to oppose the flow across the magnetic field lines, the applied field effect consists in the flow slow-down in areas wh ere the local inter- action parameter is higher.

Keywords:

The interaction of the electromagnetic field with the ionized flow, Thermal and chemical nonequilibrium.

References

  1. Bush B.B. Magnetohydrodynamic hypersonic flow past a blunt body. Journal of Aero/Space Sciences, 1958, vo1. 25, pp. 685–690. DOI: 10.2514/8.7845

  2. Poggic J., Gaitonde D.V. Magnetic control of flow past a blunt body: Numerical validation and exploration. Physics of Fluids, 2002, vol. 14, no. 5, pp. 1720–1731. DOI: 10.1063/ 1.1465424

  3. Molchanov A.M. Matematicheskoe modelirovanie giper- zvukovykh gomogennykh i geterogennykh neravnovesnykh techenij pri nalichii slozhnogo radiatsionno-konvektivnogo teploobmena [Mathematical modeling of hypersonic homo- geneous and heterogeneous nonequilibrium flows in the presence of complex radiation-convective heat transfer]. Moscow: MAI, 2017. 159 p. In Russ.

  4. Scalabrin L.C. Numerical Simulation of Weakly Ionized Hypersonic Flow over Reentry Capsules. Dissertation for the degree of Doctor of Philosophy (Aerospace Engi- neering), University of Michigan. Publication Number AAI3287624, 2007. 182 p.

  5. Lee J.H. Basic Governing Equations for the Flight Regimes of Aeroassisted Orbital Transfer Vehicles. In Progress in Aero- nautics and Astronautics: Thermal-Design of Aeroassisted Orbital Transfer Vehicles. Edited by H. F. Nelson. AIAA, New York, 1985, vol. 96, pp. 3–53. DOI: 10.2514/6.1984-1729

  6. Itikawa Y. Cross sections for electron collisions with nitrogen molecules. Journal of Physical and Chemical Reference Data, 2006, vol. 35, no. 1, pp. 31–53. DOI: 10.1063/1.1937426

  7. Lee J.H. Electron-Impact Vibrational Excitation Rates in the Flowfield of Aeroassisted Orbital Transfer Vehicles. In Progress in Aeronautics and Astronautics: Thermophysical Aspects of Re-entry Flows. Eds J.N. Moss, C.D. Scott. AIAA, New York, 1986, vol. 103, pp. 197–224. DOI: 10.2514/5.9781600865770.0197.0224

  8. Gokcen T. Computation of Thermochemical Nonequilibri- um Flows Around a Simple and a Double Ellipse. In: Hy- personic Flows for Reentry Problems. Springer-Verlag Ber- lin Heidelberg, 1991. pp. 848–870. DOI: 10.1007/978-3- 642-76527-8_55

  9. Losev S., Potapkin B., Macheret S. Chernyi G. Physical and Chemical Processes in Gas Dynamic. Richmond, TX: AIAA, 2004. 300 p.

  10. Blauer J.A., Nickerson G.R. A Survey of Vibrational Relaxa- tion Rate Data for Processes Important to CO2-N2-H2O Infra- red Plume Radiation. Technical rept. no. 0455177, 1973. 72 p.

  11. Ashratov E.A., Dubinskaya N.V. Issledovanie techenij v soplakh pri nalichii kolebatel’noj relaksatsii [[Investigation of nozzle flows with vibrational relaxation]. Vychislitel’nye metody i programmirovanie — Numerical Methods and Pro- gramming, 1977, iss. 27, pp. 96–115. In Russ.

  12. Yos J.M. Transport Properties of Nitrogen, Hydrogen, Oxy- gen, and Air to 30,000 K. Research and Advanced Development Division Avco Corporation. Wilmington, Massachu- setts. Technical Memorandum RAD TM·63·7, 1963. 77 p.

  13. Wright M.J., Bose D., Palmer G.E., Levin E. Recom- mended collision integrals for transport property computa- tions, Part 1: Air species. AIAA Journal, 2005, vol. 43, no. 12, pp. 2558–2564. DOI: 10.2514/1.16713

  14. Park C., Mehta U.B., Bogdanoff D.W. MHD Energy By- pass Scramjet Performance with Real Gas Effects. NAS2- 99092; RTOP 713-74-00. 2000. 34 p.

  15. Granthan W. Flight Results of 25,00 Foot per Second Reentry Experiment Using Microwave Reflectometers to Measure Plasma Electron Density and Standoff Distance. Hampton, VA: NASA TN D-6062. 1970. pp. 1–92.

  16. Ziemer R.W. Experimental investigation in magneto- aerodynamics. American Rocket Society Journal, 1959, vol. 29, pp. 642–647. DOI: 10.1063/1.4764105

  17. Lee J.K., Kim T., MacCormack R.W. Simulation of Hy- personic Flow within Electromagnetic Fields for Heat Flux Mitigation. AIAA Paper 2015-3503, 2015. DOI: 10.2514/ 6.2015-3503

  18. Laporta V., Bruno D. Electron-vibration energy exchange models in nitrogen-containing plasma flows. The Journal of Chemical Physics, 2013, vol. 138, pp. 104319-1-104319-9.

  19. Park C., Bogdanoff D., Mehta U. Theoretical Perfor- mance of a Nonequilibrium MHD Bypass Scramjet. AIAA Paper No. 2001-0792, 2001. 13 p. DOI: 10.2514/2.6156

  20. MacCormack R.W. Non-Equilibrium Ionized Flow Simu- lations within Strong Electro-Magnetic Fields. AIAA Paper 2010-0225, 2010. 20 p. DOI: 10.2514/6.2010-225

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI