Experimental and calculated study of the possibility of producing amorphic alloys at the explosive fragmentation of the hot drops in a low-boiling cooler


Аuthors

Ivochkin Y. P., Borodina T. I., Kazakov A. N., Teplyakov I. O.

Joint Institute for High Temperatures of the Russian Academy of Sciences, 13, Izhorskaya str., Moscow, 125412, Russia

Abstract

The presented article describes a relatively simple and technologically advanced method for producing amorphous metals by explosive fragmentation of incandescent liquid metal droplets when they fall into the cooler (cold distilled water). The numerical estimates showed that with a large margin this method can provide the required values of the cooling rate under conditions when the droplet fragments are ~ 1–100 μm in size. The results of the analysis of literature data on steam explosions indicate that the real fragments that form during the fine fragmentation of melts have similar sizes. The experiments to verify the operability of the proposed method for producing amorphous metals were performed in two ways in which metal samples falling in cold water were melted either in a suspended (levitating) state using induction heating, or in a crucible of an electric resistance furnace. The results of studies conducted in the range of changes in the initial temperature of the samples from 300 to 900°C confirmed the possibility of modeling the fragmentation of droplets of fusible metals using the developed technique. The nature of the fragmentation (explosive or quiet) and the degree of fragmentation of the droplets, the shape and size of the fragments are determined mainly by the state (oxidation) of the melt surface and its temperature. The minimum radii of the resulting particles during fine fragmenta- tion did not exceed a few micrometers, and the speed of their expansion during explosive de- struction of the droplet can reach tens of meters per second. The results of an X-ray diffraction study of tin and lead fragments confirm the presence of an amorphous structure of fragments formed during the fine fragmentation of melts during an explosive change in the boiling condi- tions of a cooler.

Keywords:

amorphous metals, steam explosion, fragmentation, cooling rate, boiling, heat exchange.

References

  1. Herlach D.M., Galenko P., Holland-Moritz D. Metastable Solids from Undercooled Melts. Pergamon Materials Series. 2007. Vol. 10. 432 p.

  2. Suzuki K., Fujimori H., Hashimoto K. Аmorfnye metally. Pod. red. C. Masumoto [Amorphous metals. Ed. C. Masu- moto]. Moscow: Metallurgiya, 1987. 328 p. In Russ.

  3. Furuya M. Method for producing amorphous metal, meth- od and apparatus for producing amorphous metal fine par- ticles, and amorphous metal fine particles. Patent US, No 7,008,463, 2006.

  4. Eckhoff R.K. Water vapor explosions — A brief review. Journal of Loss Prevention in the Process Industries, 2016, vol. 40, pp. 188–198. http://dx.doi.org/10.1016/j.jlp.2015. 11.11.017.

  5. Cronenberg A.W., Benz R. Vapor explosion phenomena with respect to nuclear reactor safety assessment. Advances in Nuclear Science and Technology, 1980, vol. 12, pp. 247–334.

  6. Berthoud. G. Vapor explosions. Annual Review of Fluid Mechanics, 2000, vol. 32, pp. 573–611.

  7. Isachenko V.P., Osipova V.A., Sukomel A.S. Teplo- peredacha [Heat transfer]. Moscow: Energoizdat, 1981. 415 p. In Russ.

  8. Nelson L.S., Duda P.M. Steam explosions experiments with single drops of iron oxide melted with CO2 — laser. High Temperature — High Pressure, 1982, vol. 14, pp. 259–281.

  9. Pak H.S., Hanson R.C., Sehgal D.R. Fine fragmentation of molten droplet in subcooled water due to vapor explosion observed by X-ray radiography. Experimental Thermal and Fluid Science, 2005, vol. 29, pp. 351–363.

  10. Dullforce T.E., Buchanan D.J., Perckover R.S. Self — triggering of small — scale fuel — coolant interactions: I. Ex- periments. Journal of Physics D: Applied Physics, 1974, vol. 9, pp. 1295–1303.

  11. Kazimi M.S., Autruffe M.I. On the mechanism for hydro- dinamic fragmentation. Transactions of the American Nuclear Society, 1978, vol. 27, pp. 321–322.

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI