Heat processes in cable inputs of superconducting lines


Аuthors

Firsov V. P.1*, Antyukhov I. V.1**, Yakovlev A. A.1***, A. , Nosov A. A.2, Fetisov S. S.2

1. Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia
2. ,

*e-mail: firsovval@mail.ru
**e-mail: cryogen204@mail.ru
***e-mail: tempero.m@gmail.com

Abstract

The article considers the thermal state in the basic elements of a cryogenic energy transfer line with high-temperature superconductors.

The temperature fields distribution in the heat-stressed elements of the cryogenic energy transmission line with high-temperature superconductors depends on the methods of supplying the cryogenic coolant to cable cryostats and current leads. A large contribution to the total heat flux, especially in cable power lines of short length, falls at the current leads. The current leads are intended for the electrical connection of the current-carrying elements of the HTSC power electric cable located in the low-temperature zone with the current-carrying elements of the cable industrial network. Current leads should ensure the necessary current loading of the power cable at minimum heat infiltration from the environment into the low-temperature zone. The cryo-refrigerator refrigerating capacity in the cryostat loop is being se-lected by the total value of heat infiltrations.

The most urgent problem is defining the heat infiltrations through current leads, which are being determined by either numerical calculations or experimentally.

The power HTSC systems employ liquid nitrogen or hydrogen as a coolant. The temperature range in cryostats with liquid nitrogen varies from 65 K to 78 K, and in hybrid energy lines operating on liquid hydrogen from 19 K to 35 K.

Computations of complex real current lead structures consist in the joint solution of the hy-drodynamics and heat transfer equations for the flux, and the energy equation for the wall. The article considers a three-dimensional non-stationary motion of weakly compressible media (gas and liquid) with a free surface in a semi-closed volume at Mach numbers up to 0.3. The mathe-matical model is based on the Navier-Stokes equations and total enthalpy. These equations are being solved in conjunction with the equation of state for gas or liquid, the equations for the low Reynolds k-ε turbulence model, and the three-dimensional energy equation for the wall.

Recently, Flowvision and ANSYS application packages, or specially designed software are being used for complex three-dimensional thermal calculations.

Keywords:

high-temperature superconductors, liquid hydrogen, heat inflow, thermal insula-tion, cryostat.

References

  1. Antyukhov I.V., Marinin K.S., Nosov A.A., Potani- na L.V., Firsov V.P., Yakovlev A.A. Gibridnye linii peredachi ehnergii so sverkhprovodyashhimi kabelyami — optimizatsiya termostatirovaniya i kontsevykh muft [Hy-bride power lines with superconducting cables — optimiza-tion of thermostatting and cable terminations]. Kabeli i provoda — Cables and Wires, 2018, no. 6 (374), pp. 20–30. In Russ.

  2. Kostyuk V.V., Antyukhov I.V., Blagov E.V., Vysots- ky V.S., Katorgin B.I., Nosov A.A., Fetisov S.S., Fir- sov V.P. Experimental hybrid power transmission line with liquid hydrogen and MgB2-based superconducting cable. Technical Physics Letters, 2012, vol. 38, no. 3, pp. 279–282. https://doi.org/10.1134/S106378501203025X

  3. Vysotsky V., Nosov A., Fetisov S., Svalov G., Kostyuk V., Blagov E., Antyukhov I., Firsov V., Katorgin B., Rakh-

  4. manov A. Hybrid energy transfer line with liquid hydrogen and superconducting MgB2 cable — First experimental proof of concept. IEEE Transactions on Applied Superconductivi-ty, 2013, vol. 23, no. 3. DOI: 10.1109/TASC.2013.2238574

  5. Kostyuk V.V., Blagov E.V., Antyukhov I.V., Firsov V.P., Vysotsky V.S., Nosov A.A., Fetisov S.S., Zanegin S.Yu., Svalov G.G., Rachuk V.S., Katorgin B.I. Cryogenic de-sign and test results of 30-m flexible hybrid energy transfer line with liquid hydrogen and superconducting MgB2 cable. Cryogenics, 2015, vol. 66, pp. 34–42. https://doi.org/ 10.1016/j.cryogenics.2014.11.010

  6. Kostyuk V.V., Firsov V.P. Teploobmen i gidrodinamika v kriogennykh dvigatel’nykh ustanovkakh [Heat transfer and hydrodynamics in cryogenic propulsion systems]. Moscow: Nauka, 2015, 319 p. In Russ.

  7. Grigoriev V.A., Pavlov Yu.M., Ametistov E.V. Kipenie kriogennykh zhidkostej [The boiling of cryogenic liquids]. Moscow: Energiya, 1977. 286 p. In Russ.

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI