Calculation of heat load of ablative polymer protective material taking into account the nonequilibrium kinetics of destruction


Аuthors

, , Netelev A. V.*, Ramazanova D. R.

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

*e-mail: netelev@mai.ru

Abstract

Ablative polymeric materials are widely used as elements of heat-shielding packages in modern rocket and space technology, in particular, descent vehicles designed to enter the atmosphere of planets. During the operation of such devices, the question of determining the thermal loading of the outer layer of thermal protection is acute. Direct measurement of the heat flux on the surface of the heat-shielding material in this case is not possible due to the high temperatures and the degradation process in the material. To solve this problem, sensors integrated in the thermal protection can be used, in which the measuring elements — thermocouples, are buried in the bulk of the material. The sensors themselves, in this case, are made of a material identical to the material of the external heat-protective layer. When choosing the installation depth of the measuring element in the sensor, it is important that during the destruction of the sensor material the measuring element does not fall into the destruction zone, because this may affect the accuracy of the measured data and lead to thermocouple bypass.
The presented article is devoted to the development of an algorithm for processing data from heat flow sensors installed in an external collapsing layer of a heat-protective package of a descent vehicle. The initial mathematical model of heat transfer in such a material contains the equation of nonequilibrium thermochemical kinetics of destruction. The mass destruction rate was calculated as a function of temperature and heating rate. The developed algorithm is based on solving the inverse heat transfer problem by the iterative regularization method. Testing of the developed algorithm was carried out according to an experiment carried out in the «Thermal Laboratory» of the MAI department 601 at the experimental stand TVS-2M.

Keywords:

ablative heat-shielding coatings, nonequilibrium destruction kinetics, inverse heat transfer problems, iterative regularization.

References

  1. Hansel J.G., McAlevy R.F. Energetics and chemical kinetics of polystyrene surface degradation in inert and chemically reactive environments. AIAA Journal, 1966, vol. 4, no. 5, pp. 841–848. DOI: 10.2514/3.3555

  2. Lundell J.H., Dickey R.R., Jones J.W. Performance of charring ablative materials in the diffusion — controlled Surface Combustion regime. AIAA Journal, 1968, vol. 6, no. 6, pp. 1115–1124. https://doi.org/10.2514/6.1967-328

  3. Gorsky V.V. Teoreticheskie osnovy rascheta ablyacionnoy teplovoy zaschity [Theoretical basis for calculating ablative thermal protection]. Moscow: Nauchniy mir, 2015. 688 p. In Russ.

  4. Mishin V.P., Alifanov O.M. Inverse heat transfer problems as applied for designing and testing technological objects. Journal of Engineering Physics and Thermophysics, 1982, vol.42, no. 2, pp.181—191.

  5. Alifanov O.M., Budnik S.A., Nenarokomov A.V., Netelev A.V., Titov D.M. Destructive materials thermal characteristics determination with application for spacecraft structures testing // Acta Astronautica. 2013. V. 85. Р. 113–119. DOI: 10.1016/j.actaastro.2011.10.003

  6. Tikhonov A.N, Arsenin V.Ya. Metody resheniya nekorrektnykh zadach [Methods for solving ill-posed problems]. Moscow, Nauka, 1986, 288 p. In Russ.

  7. Alifanov O.M., Artyukhin E.A, Rumyantsev S.V. Ekstremal’nye metody resheniya nekorrektnykh zadach i ikh prilozheniya k obratnym zadacham teploobmena [Extreme methods for solving ill-posed problems and their applications to inverse heat transfer problems]. Moscow, Nauka, 1988, 288 p. In Russ.

  8. Alifanov O.M., Rumyancev S.V. On derivation of the formulas for the gradient of the discrepancy at iteration solution of inverse heat conduction problems. II. Determination of the gradient through the conjugated variable. Journal of Engineering Physics and Thermophysics, 1987, vol. 52, no. 4, pp.668—675.

  9. Alifanov, O.M., Artyukhin, E.A., Rumyantsev, S.V. Extreme Methods for Solving Ill-Posed Problems with Applications to Inverse Problems. Begell House, New York\Wallinford (UK), 1995. 306 p.

  10. Alifanov O.M., Budnik S.A., Mikhailov V.V., Nenarokomov A.V. Eksperimental’no-vychislitel’nyj kompleks dlya issledovaniya teplofizicheskikh svojstv teplotekhnicheskikh materialov [Simulation computer complex for studies in thermophysic properties of termotechnical materials]. Kosmonavtika i raketostroenie — Space and rocket science, 2006, vol. 42, no. 1, pp. 126–139. In Russ.

  11. Morzhukhina A.V., Netelev A.V., Rudoi I.A. Identifikatsiya matematicheskoj modeli neravnovesnoj termokhimicheskoj kinetiki destruktsii polimernykh teplozashhitnykh materialov [Identification of functionally graded materials thermophysical properties by means of inverse problems method]. Teplovye protsessy v tekhnike — Thermal Processes in Engineering, 2018, vol. 10, no. 3-4, pp. 171–178. In Russ.

  12. https://www.netzsch.ru (assessed 05.03.2020)

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI