The article presents the results of theoretical and experimental studies of cure kinetics of the glass-fiber and carbon fiber-reinforced plastics fabricated on the basis of the epoxy binder.The authors suggest application of the values of temperature gradients over the thickness as an op-timality criterion of the heating rate. Samples of glass-fiber and carbon fiber-reinforced plas-ticsfabricated on the basis of the epoxy binder were employed as objectsofresearch. Theoretical computations, using ESI PAM-RTM program, were performed to determine temperature fields on the surface and inside a sample. The heat release value, being determined experimentally for different cure rates, was used as the initial data for modelling. It was established, that with one and the same cure mode, the temperature gradients values for the glass-fiber samples were higher, than for those similar of carbon fiber-reinforced plastics.
Today composite products are widely used in various fields, especially in mechanical engi-neering, aircraft manufacturing, space rocket production, due to their advantages such as high specific strength, high specific modulus, corrosion resistance, able to design and so on. Compo-site materials need to be cured from raw materials to forming. One of the most important tasks in the manufacture of composite products is to improve their quality. The curing process affects the quality of products. This article investigated the kinetics of the curing process of Glass fiber reinforced plastic (GFRP) and carbon fiber reinforced plastic (CFRP). The research object is GFRP and CFRP based on epoxy resins. The heat release curve of the resin under different heating rate was obtained through experimental research and the curing kinetic parameters of the resin were obtained according to the curve. Based on the experimental curing kinetic para-meters and the relevant curing kinetic model, the curing process of the GFRP and CFRP was theoretically simulated by using the ESI PAM-RTM program. Finally, the temperature field, curing degree field and heat dissipation rate of GFRP and CFRP under the same curing model were obtained. In order to analyze the temperature field, the temperature gradient over the thickness of parts was used. It is concluded that the temperature gradient in the GFRP is higher than that in the CFRP under the same curing mode.
Reznik S.V., Prosuntsov P.V., Novikov A.D. Perspektivy povysheniya razmernoj stabil’nosti i vesovoj ehffektivnosti reflektorov zerkal’nykh kosmicheskikh antenn iz kompozitsionnykh [Prospects of increasing the dimensional stability and the weight efficiency of mirror space antenna reflectors made of composite materials]. Izvestiya vysshikh uchebnykh zavedenij. Mashinostroenie — BMSTU Journal of Mechanical Engineering, 2018, no. 1(694), pp. 71–83. DOI: 10.18698/0536-1044-2018-1-71-83 In Russ.
Basharov E.A., Vagin A.U. Аnaliz primeneniya kompozitsionnykh materialov v konstruktsii planerov ver-toletov [Analysis of polymeric composite materials applica-tion for helicopter airframe design]. Trudy MAI — Proceed-ings of MAI, 2017, no. 92, 13 p. In Russ.
Endogur A.I., Kravtsov V.A. Ideologiya proektirovaniya aviatsionnykh konstruktsij iz polimernykh kompozitsionnykh materialov [Ideology of design of avia-tion designs from polymeric composite materials]. Trudy MAI — Proceedings of MAI, 2015, no. 81, 4 p. In Russ.
Chernovolov R.A., Garifullin M.F., Kozlov S.I. Vali-datsiya protsedur proektirovaniya i izgotovleniya dinami-cheski podobnykh modelej letatel’nykh apparatov s prime-neniem polimernykh kompozitsionnykh materialov [Valida-tion of designing and manufacturing procedures of aircraft dynamically similar models with polymer composite mate-rials application]. // Vestnik Moskovskogo aviatsionnogo instituta — Aerospace MAI journal, 2019, vol. 26, no. 3, pp. 102–112. In Russ.
Vasiliev V.V., Protasov V.D., Bolotin V.V. and etc. Kompozitsionnye materialy: Spravochnik. [Composite mate-rials: Reference book]. Moscow: Mashinostroenie, 1990. 512 p. In Russ.
Petrova A.P., Malysheva G.V. Klei, kleevye svyazuyushhie i kleevye prepregi: uchebnoe posobie [Adhesives, adhesive binders and adhesive prepregs: A training manual]. Mos-cow: VIAM, 2017. 472 p. In Russ.
Belyakov E.V., Tarasov V.A., Boyarskaya R.V. Vybor rezhimov formovaniya kompozitnykh konstruktsij raketno-kosmicheskoj tekhniki [Selection of formation modes for composite structures of rocket and space technology]. Izvestiya vysshikh uchebnykh zavedenij. Mashinostroenie — BMSTU Journal of Mechanical Engineering, 2012, no. 5, pp. 37–43. In Russ.
Borodulin A.S., Marycheva A.N., Malysheva G.V. Simu-lation of impregnation kinetics of fabric fillers in the pro-
duction of fiberglass articles. Glass Physics and Chemistry, 2015, vol. 41, no. 6, pp. 660–664.
Prosuntsov P.V., Reznik S.V., Mikhailovskiy K.V., Belenkov E.S. Modelirovanie progreva svyazuyushhego polimernykh kompozitsionnykh materialov s ispol’zovaniem SVCH izlucheniya [Modeling the heating of the binder of polymeric composite materials using microwave radiation]. Izvestiya vysshikh uchebnykh zavedenij. Mashinostroenie — BMSTU Journal of Mechanical Engineering, 2018, vol. 12(705), pp. 83–92. DOI: 10.18698/0536-1044-2018-12-83-92. In Russ.
Ivanov N.V., Gurevich Y.M., Khaskov M.A., Akmeev A.R. Izuchenie rezhima otverzhdeniya svyazuyushhego VSEH-34 i ego vliyaniya na mekhanicheskie svojstva [Studying of cure mode of VSE-34 binding and its influ-ences on mechanical properties]. Аviatsionnye materialy i tekhnologii — Aviation Materials and Technologies, 2017, no. 2(47), pp. 50–55. DOI: 10.18577/2071-9140-2017-0-2-50-55 In Russ.
Marakhovsky P.S., Barinov D.Ya., Chutskova E.Yu., Melnikov D.A. Otverzhdenie mnogoslojnykh polimernykh kompozitsionnykh materialov. Chast’ 2. Formovanie tol-stostennoj plity stekloplastika [The curing of multilayered polymer composite materials. Part 2. The molding of thick-walled glass-plastic plate]. Vse materialy. Entsiklope-dicheskiy spravochnik — All Materials. Encyclopaedic Ref-erence Manual, 2018, no. 6, pp. 7–14. In Russ.
Barinov D.Y., Mayorova I.A., Marahovskij P.S, Zuev A.V., Kucevich K.E., Lukina N.F. Matematicheskoe modelirovanie temperaturnykh polej pri otverzhdenii tol-stostennoj plity stekloplastika [Mathematical modeling of temperature fields during curing of thick-walled fiberglass plate]. Perspektivnye Materialy — Perspektivnye Materialy, 2015, no. 4, pp.5—14. In Russ.
Chen Yangyang, Marakhovsky P.S., Malysheva G.V. Opredelenie teplofizicheskikh svojstv ehpoksidnykh materi-alov v protsesse ikh okhlazhdeniya [Determination of ther-mophysical properties of epoxy materials during their curing]. Trudy VIAM — Proceedings of VIAM, 2018, no. 9 (69), pp.119—123. DOI: 10.18577/2307-6046-2018-0-9-119-123 In Russ.
Kissinger H.E. Reaction kinetics in differential thermal analysis[J]. Analytical chemistry, 1957, vol. 29, no. 11, pp. 1702–1706.
Boswell P.G. On the calculation of activation energies using a modified Kissinger method. Journal of Thermal Analysis and Calorimetry, 1980, vol. 18, no. 2, pp. 353–358.
mai.ru — informational site of MAI Copyright © 2009-2024 by MAI |