In connection with theoretical and applied significance of studies of auto-model («self-similar») processes of heat transfer in solid bodies, problems of determination of non-stationary temperature field of isotropic solid body with absorption of penetrating radiation inclusion as a spherical shape layer have been formulated. The analysed mathematical model of the heat trans-fer process in the studied system is based on the hypothesis that absorbing inclusion is thermally thin, i.e. the implementation of the idea of «concentrated capacitance,» and is a mixed task for the equation in second-order partial derivatives of the parabolic type with a specific regional condition actually taking into account the presence of absorbing inclusion in the system. Suffi-cient conditions are identified, fulfilment of which provides possibility of implementation of self-similar process of heat transfer in analysed system. It is theoretically justified that the feasi-bility of the heat transfer process under study is directly related to the fulfilment of the condi-tions represented by the set of two equations. These conditions fully and unambiguously deter-mine the structure of the laser radiation flux, the realized mode of heat exchange in the analysed system and the law of temperature change of the medium filling the spherical cavity. In order to obtain meaningful information on properties of self-similar process of heat transfer, physical properties of studied process are qualitatively investigated and its specific features are estab-lished. It has been found that the implementation of the auto-model process of heat transfer pro-vides the possibility of thermostating the boundary of the spherical cavity, which has an inclu-sion absorbing penetrating radiation.
Karslou G., Eger D. Teploprovodnost’ tvyordyhtel [Thermal conductivity of solids]. M.: Nauka, 1964. 488 p. In Russ.
Lykov A.V. Teoriy ateploprovodnosti [Theory of heat conductivity]. Moscow: Vysshayashkola, 1967. 600 p. In Russ.
Kartashov E.M. Analiticheskie metody v teorii teploprovodnosti tvyordyh tel [Analytical methods in the theory of the thermal conductivity of solids]. M.: Vysshayashkola, 2001. 552 p. In Russ.
Formalev V.F. Teploprovodnost’ anizotropnyh tel. Analiticheskie metody resheniya zadach [Thermal conductivity of anisotropic bodies. Analytical methods for solving problems]. M.: Fizmatlit, 2014. 312 p.
Sedov L.I. Metody podobiya i razmernostej v mekhanike [Similarity and dimension methods in mechanics]. Moscow: Nauka, 1977. 440 p. In Russ.
Zel’dovich Y.B., Raizer Y.P. Fizika udarnykh voln i vysokotemperaturnykh gidrodinamicheskikh yavlenij [Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena]. Moscow: Nauka, 1966. 686 p. In Russ.
Volosevich P.P., Levanov E.I. Аvtomodel’ny eresheniya zadach gazovoj dinamiki i teploperenosa [Self-similar solutions of the gas dynamics and heat-transfer problems]. Moscow: Publishing house of MIPT, 1997. 240 p. In Russ.
Samarsky A.A., Galaktionov V.A., Kurdyumov S.P., Mikhailov A.P. Rezhimy s obostreniem v zadachakh dlya kvazilinejnykh parabolicheskikh uravnenij [Regimes with sharpenings in problems for quasilinear parabolic equations]. Moscow: Nauka, 1987. 478 p. In Russ.
Attetkov A.V., Volkov I.K. O vozmozhnosti realizatsii rezhima termostatirovaniya granitsy sfericheskogo ochaga razogreva [On the possibility of the realization of thermostating mode of a spherical hot spot boundary]. Izvestiya RАN. Energetika — Proceedings of the RAS. Energetics, 2016, no. 3, pp. 141–147. In Russ.
Attetkov A.V., Volkov I.K. Аvtomodel’noe reshenie zadachi teploperenosa v tverdom tele so sfericheskim ochagom razogreva, obladayushhim termicheski tonkim pokrytiem [Self-similar solution of heat transport problems in a solid with a spherical hot spot having a thermally thin coating]. Teplovyeprotsessy v tekhnike — Thermal Processes in Engineering, 2016, vol. 8, no. 7, pp. 297–300. In Russ.
Attetkov A.V., Volkov I.K. Аvtomodel’noe reshenie zadachi teploperenosa v tverdomtele, soderzhashhem sfericheskij ochag razogreva s teplopogloshhayushhim pokrytiem [Self-similar solution of heat transport problems in solid with heat-absorbing coating spherical hot spot]. Vestnik MGTU im. N.EH. Baumana. Ser. Estestvennyenauki — Herald of the Bauman Moscow State Technical University. Series Natural Sciences, 2016, no. 4, pp. 97–106. In Russ. DOI: 10.18698/1812-3368-2016-4-97-106
Assovsky I.G. Fizika goreniya i vnutrennyaya ballistika [Combustion physics and internal ballistics]. Moscow: Nauka, 2005. 357 p. In Russ.
Burkina R.S., Morozova E.Y., Tsipilev V.P. Initiation of a reactive material by a radiation beam absorbed by optical heterogeneities of the material. Combustion, Explosion, and Shock Waves, 2011, vol. 47, no. 5, pp. 581–590.
Kriger V.G., Kalenskii A.V., Zykov I.Y., Nikitin A.P., Zvekov A.A. Heat-transfer processes upon laser heating of inert-matrix-hosted inclusions. Thermophysics and Aeromechanics, 2013, vol. 20, no.3, pp. 367–374.
Aduev B.P., Anan’eva M.V., Zvekov A.A., Kalenskii A.V., Kriger V.G., Nikitin A.P. Miro-hotspot model for the laser initiation of explosive decomposition of energetic materials with melting taken into account. Combustion, Explosion, and Shock Waves, 2014, vol. 50, no. 6, pp. 704–710.
Attetkov A.V., Volkov I.K., Gaydaenko K.A. Protsessy teploperenosa v tverdomtele s pogloshhayushhim vklyucheniem pri vozdejstvii lazernogo izlucheniya [Heat transfer processes in a solid with absorbing inclusion while the laser radiation impact]. Teplovyeprotsessy v tekhnike — Thermal processes in engineering, 2019, vol. 19, no. 5, pp. 216–221. In Russ.
Attetkov A.V., Volkov I.K., Gaydaenko K.A. Аvtomodel’nye protsessy teploperenosa v prozrachnom dlya izlucheniya tverdom tele s pogloshhayushhim vklyucheniem pri nalichii fazovykh prevrashhenij v sisteme [Self-similar heat transfer processes in a radiation-transparent solid body containing an absorptive inclusion with the system featuring phase transitions]. Vestnik MGTU im. N.E. Baumana. Ser. Mashinostroenie — Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering, 2019, no. 2, pp.60—70.DOI: 10.18698/0236-3941-2019-2-60-70
Koshlyakov N.S., Gliner E.B., Smirnov M.M. Uravneniya v chastnykh proizvodnykh matematicheskoj fiziki [Partial differential equations of mathematical physics]. Moscow: Vysshaya shkola, 1970. 712 p. In Russ.
Pudovkin M.А., Volkov I.K. Kraevye zadachi matematicheskoj teorii teploprovodnosti v prilozhenii k raschetam temperaturnykh polej v neftyanykh plastakh pri zavodnenii [Boundary-value problems of the mathematical theory of heat conduction in application to calculations of temperature fields in oil reservoirs in water flooding]. Kazan: Publishing house of Kazan University, 1978. 188 p. In Russ.
mai.ru — informational site of MAI Copyright © 2009-2024 by MAI |