In this paper, mesoporous silicon-based structures with adsorbed water are considered in the temperature range 233–273 K. A mathematical model was developed for predicting the values of bulk density of the deformation energy caused by the difference in the thermal expansion coefficients of the heterogeneity elements in the materials studied, which occurs during the melting of water that froze in the mesopores. The model is based on the generalized singular approximation of random field theory and the concept of the stress concentration operator (fourth-rank tensor), which connects the average value of stresses throughout the material with its local values within a single inhomogeneity element. This approach takes into account the structure of the system based on the mesoporous silicon with sorbed water and the concentra-tion of inclusions and can be used to predict the melting temperature of ice confined inside the pores of a silicon matrix. Numerical calculations were performed using the developed model. The dependences of the bulk density of the deformation energy (local and average values) on the concentration of ice inclusions in the porous silicon matrix were studied. The calculation re-sults showed that the local elastic energy in the ice inclusions increases nonlinearly, while the orientation of the inclusions in the matrix does not affect the indicated energy characteristic sig-nificantly. An increase in the volumetric content of ice leads to a stabilization of the local elastic energy in the silicon matrix with a porosity of more than 40%. In this case, the average values of the bulk density of the deformation energy increase according to a law close to linear.
Dunn J.R., Hudec P.P. Water, clay and rock soundness. Ohio Journal of Science, 1966, vol. 66, no. 2, pp. 153–168.
Gillott J.E. Properties of aggregates affecting concrete in North America. Quarterly Journal of Engineering Geology and Hydrogeology, 1980, vol. 13, no. 4, pp. 289–303. DOI: 10.1144/GSL.QJEG.1980.013.04.07
Mikhaylik V.A., Dmitrenko N.V., Mikhaylik T.A. Vliyaniye termicheskogo vozdeystviya na sostoyaniye vody v rastitel’nykh tkanyakh [Influence of thermal treatment on the water state in plant tissues]. Promyshlennaya teplotekhnika — Industrial heat engineering, 2007, vol. 29, no. 7, pp. 212–217. In Russ.
Fang G., Zhou J., Pan A., Liang S. Recent advances in aqueous zinc-ion batteries. ACS Energy Letters, 2018, vol. 3, no. 10, pp. 2480–2501. DOI: 10.1021/acsenergylett.8b01426
Zhang N., Jia M., Dong Y., Wang Y., Xu J., Liu Y., Jiao L., Cheng F. Hydrated layered vanadium oxide as a highly reversible cathode for rechargeable aqueous zinc batteries. Advanced Functional Materials, 2019, vol. 29, iss. 10, pp. 1807331. DOI: 10.1002/adfm.201807331
Liu S., Hu J.J., Yan N.F., Pan G.L., Li G.R., Gao X.P. Aluminum storage behavior of anatase TiO2 nanotube arrays in aqueous solution for aluminum ion batteries. Energy & Environmental Science, 2012, vol. 5, iss. 12, pp. 9743–9746. DOI: 10.1039/C2EE22987K
Ashuri M., He Q., Shaw L.L. Silicon as a potential anode material for Li-ion batteries: where size, geometry and structure matter. Nanoscale, 2016, vol. 8, iss. 1, pp. 74–103. DOI: 10.1039/C5NR05116A
Kulova T.L., Skundin A.M. Problemy nizkotemperaturnykh litiy-ionnykh akkumulyatorov [Problems of low-Temperature Li-ion batteries]. Elektrokhimicheskaya energetika — Electrochemical energetics, 2017, vol. 17, no. 2, pp. 61–88. DOI: 10.18500/1608-4039-2017-17-2-61-88. In Russ.
Luk’yanova E.N., Kozlov S.N., Demidovich V.M., Demidovich G.B. Features of the charge transfer in nanoporous silicon and silicon oxide with adsorbed water. Technical Physics Letters, 2001, vol. 27, no. 6, pp. 441–443. DOI: 10.1134/1.1383818
Shilyaeva Yu.I., Bardushkin V.V., Gavrilov S.A., Silibin M.V., Yakovlev V.B., Pyatilova O.V. Bulk density of the energy of deformation in an anodic aluminum oxide with pores filled by threadlike metal nanocrystals. Russian Journal of Physical Chemistry A, 2013, vol. 87, no. 11, pp. 1870–1874. DOI: 10.1134/S0036024413100178
Shilyaeva Yu.I., Bardushkin V.V., Gavrilov S.A., Silibin M.V., Yakovlev V.B., Borgardt N.I., Volkov R.L., Smirnov D.I., Zheludkevich M.L. Melting temperature of metal polycrystalline nanowires electrochemically deposited into the pores of anodic aluminum oxide. Physical Chemistry Chemical Physics, 2014, 16(36), pp. 19394–19401. DOI: 10.1039/c4cp02436b
Shilyaeva Yu.I. Issledovaniye osobennostey fazovykh perekhodov I roda v nitevidnykh nanokristallakh (In, Sn, Zn) v porakh anodnogo Al2O3. Cand. chem.sci diss. [Investigation of the features of first-order phase transitions in whisker nanocrystals (In, Sn, Zn) in the pores of anodic Al2O3. Cand. diss.] Moscow, 2015. 141 p. In Russ.
Bardushkin V.V., Kirillov D.A., Shilyaeva Yu.I., Gavrilov S.A., Yakovlev V.B., Silibin M.V. Effect of the thermoelastic properties of components on the melting point of filamentary nanoparticles of Cu, Ag, and Au in the matrix of anodic Al2O3. Russian Journal of Physical Chemistry A, 2017, vol. 91, no. 6, pp. 1099–1104. DOI: 10.1134/S0036024417060036
Shi Z., Wynblatt P., Srinivasan S.G. Melting behavior of nanosized lead particles embedded in an aluminum matrix. Acta Materialia, 2004, vol. 52, iss. 8, pp. 2305–2316. DOI: 10.1016/j.actamat.2004.01.021
Kolesnikov V.I., Yakovlev V.B., Bardushkin V.V., Sychev A.P. O prognozirovanii raspredelenij lokal’nykh uprugikh polej v neodnorodnykh sredakh na osnove obobshhennogo singulyarnogo priblizheniya [On the prediction of local elastic fields’ distributions in non-uniform media on the basis of a generalized singular approximation]. Vestnik Yuzhnogo nauchnogo tsentra RAN — Bulletin of the Southern Scientific Center of the Russian Academy of Sciences, 2015, vol. 11, no. 3, pp. 11–17. In Russ.
Shermergor T.D. Teoriya uprugosti mikroneodnorodnykh sred [Micromechanics of inhomogeneous medium]. Moscow: Nauka, 1977. 399 p. In Russ.
Shilyaeva Y., Volovlikova O., Poyarkov K., Yuditskaya S., Gavrilov S. Characterization of mesoporous silicon using DSC thermoporometry. International Journal of Nanoscience, 2019, vol. 18, no. 3&4, pp. 1940073. DOI: 10.1142/S0219581X19990011.
Kolesnikov V.I., Bardushkin V.V., Sorokin A.I., Sychev A.P., Yakovlev V.B. Effect of thermoelastic characteristics of components, shape of non-isometric inclusions, and their orientation on average stresses in matrix structures. Physical Mesomechanics, 2018, vol. 21, no. 3, pp. 258–262. DOI: 10.1134/S1029959918030104
Bardushkin V.V., Kochetygov A.A., Yakovlev V.B. Modelirovaniye predel’nogo napryazhennogo sostoyaniya matrichnogo kompozita s oriyentirovannymi voloknami pri termodinamicheskikh vozdeystviyakh [Modeling of the limit stress state of a matrix composite with oriented fibers under thermodynamic influences]. Teplovyye protsessy v tekhnike — Thermal processes in engineering, 2020, vol. 12, no. 3, pp. 118–124. DOI: 10.34759/tpt-2020-12-3-118-124. In Russ.
Belosludov V.R., Inerbaev T.M., Shpakov V.P., Tse D.S., Belosludov R.V., Kavazoe E. Moduli uprugosti i granitsy stabil’nosti l’dov i klatratnykh gidratov kubicheskoy struktury I [Moduli of elasticity and stability boundaries of ice and clathrate hydrates of cubic structure I]. Ros. khim. zh. (ZH. Ros. khim. ob-va im. D.I. Mendeleyeva) — Russian Chemical Journal (Journal of the Russian Chemical Society named after D.I. Mendeleev). 2001, vol. XLV, no. 3, pp. 45–50. In Russ.
Schulson E.M. The structure and mechanical behavior of ice. JOM, 1999, vol. 51, pp. 21–27. DOI: 10.1007/s11837-999-0206-4
Bardushkin V.V., Shilyaeva Yu.I., Kochetygov A.A., Dronov A.A. Kontsentratsiya napryazheniy v mezoporistykh strukturakh na osnove kremniya s adsorbirovannoy vodoy v intervale temperatur 233–273 K [Stress concentration in mesoporous silicon-based structures with adsorbed water in the temperature range 233–273 K]. Elektronnaya tekhnika. Seriya 3. Mikroelektronika — Electronic engineering. Series 3. Microelectronics. 2020. no. 1(177), pp. 54–59. DOI: 10.7868/S2410993220010078. In Russ.
Fizicheskie velichiny: Spravochnik. Pod. red. Grigor’eva I.S., Meilikhova E.Z. [Physical Quantities: Handbook. Ed. Grigor’ev I.S., Meilikhov E.Z.]. Moscow: Energoatomizdat, 1991. 1232 p. In Russ.
mai.ru — informational site of MAI Copyright © 2009-2024 by MAI |