An oil drop heating modelling at unstable motion in the spray chamber


Аuthors

Sinitsyn N. N., Telin N. V., Andreev A. S., Andreev A. S.

Cherepovets State University , 5 Lunacharsky Pr., Cherepovets, Vologda region, Russia, 162600

Abstract

The article presents mathematical description of the drop of oil heating process at the un-steady motion in the spray chamber according to the straight-through arrangement. A numerical modelling of the drop of oil heating process is presented. A mathematical description of the process of heating a drop of oil with unsteady movement in the spray chamber according to the direct-flow circuit is given. A numerical simulation of the process of heating an oil drop is pre-sented. Dependencies for computing the time of an oil drop complete heating, and dependences for determining the coordinates of the droplet trajectory at the moment of its complete heating are proposed.

Keywords:

spray chamber, drop of oil, equation of motion, thermal conductivity equation, temperature gradient, unstable motion, trajectory.

References

  1. Utkin Yu.V. Vtorichnyie resursyi — vazhnyiy rezerv chernoy metallurgii [Secondary resources — an important reserve of ferrous metallurgy]. Stal’— Steel, 1994, no. 3, pp. 1–6. In Russ.

  2. Vysokomornaya O.V., Zakharevich A.V., Strizhak P.A. Eksperimentalnaya otsenka izmeneniya razmerov i skorostey dvizheniya kapel pri ikh peremeshchenii v oblasti vysokotemperaturnykh produktov sgoraniya [Experimental evaluation of variation of sizes and velocities of droplets during moving through high temperature combustion products]. Teplovyye protsessy v tekhnike — Thermal Processes in Engineering, 2014, vol. 6, no. 5, pp. 214— 220. In Russ.

  3. Kuznetsov G.V., Strizhak P.A. Vliyaniye formy kapli vody na rezultaty matematicheskogo modelirovaniya eye ispareniya pri dvizhenii cherez vysokotemperaturnyye produkty sgoraniya [Influence of configuration of water drop on results of mathematical simulation of its evaporation at moving through high-temperature combustion products]. Teplovyye protsessy v tekhnike — Thermal Processes in Engineering, 2013, vol. 5, no. 6, pp. 254–261. In Russ.

  4. Kharkov V.V. Mathematical modeling of thermolabile solutions concentration in vortex chamber. Joumal of Physics: Conf. Ser., 2018, vol. 980, p. 012006.

  5. Kharkov V.V., Nikilaev A.N. Chislennoye modelirovaniye teplo- i massoobmena v protsesse kontsentrirovaniya termolabilnykh rastvorov v zakruchennom potoke [Numerical simulation of heat and mass transfer in the process of concentration of thermolabile solutions in a swirling flow]. Polzunovskiy vestnik —Polzunovsky Vestnik, 2017, no. 1, pp. 30–34. In Russ.

  6. 6. Volkov R.S., Kuznetsov G.V., Strizhak P.A. Movement and evaporation of water droplets under conditions typical for heat-exchange chambers of contact water heaters. Thermal Engineering, 2016, vol. 63, no. 9 , pp. 666–673. DOI: 10.1134/S004060151609007X

  7. Tishchenko V.A., Alekseev R.A., Gavrilov I.Y. A model of the motion of erosion-hazardous droplets in steam turbines’ interblade channels. Thermal Engineering, 2018, vol. 65, no. 12, pp. 885–892. DOI: 10.1134/S0040601518120108

  8. Akulich P.V. Simulation of heat and mass transfer of droplets in drying an overheated liquid under conditions of combined energy effect. Journal of Engineering Physics and Thermophysics, 2019, vol. 92, no. 2, pp. 389–397.

  9. Volkov R.S., Kuznetsov G.V., Strizhak P.A., Nakoryakov V.E. Experimental estimation of evaporation rates of water droplets in high-temperature gases. Journal of Applied Mechanics and Technical Physics, 2017, vol. 58, no. 5, pp. 889–894.

  10. Dmitriyev A.V., Kruglov L.V., Dmitriyeva O.S. Opredeleniye srednikh koeffitsiyentov teplootdachi posledovatelno padayushchikh kapel v potoke gaza [Determination of average heat transfer coefficients of successively falling drops in a gas stream]. Vestnik tekhnologicheskogo universiteta — Bulletin of the Technological University, 2017, vol. 20, no. 5, pp. 27–29. In Russ.

  11. Strizhak P.A., Volkov R.S., Zabelin M.V., Kurisko A.S. Osobennosti ispareniya odinochnykh i polidispersnogo potoka kapel vody v vysokotemperaturnoy gazovoy srede [Features of single and polydisperseflow water droplets evaporarion in high temperature gas area]. Fundamentalnyye issledovaniya — Fundamental research, 2014, no.9-2, pp. 307–311. In Russ.

  12. Kuznetsov G.V., Strizhak P.A. Evaporation of water droplets moving through high-temperature gases. Journal of Engineering Physics and Thermophysics, 2018, vol. 91, no.1, pp. 97–103. DOI: 10.1007/s10891-018-1723-1

  13. GirinA.G. Laws governing the fragmentation of a droplet in a high-speed stream. Journal of Engineering Physics and Thermophysics, 2011, vol. 84, no. 5, pp. 1009–1015. DOI: 10.1007/s10891-011-0561-1

  14. Volkov R.S., Zabelin M.V., Kuznetsov G.V., Strizhak P.A. Vliyaniye razmerov i skorostey vvoda kapel vody v zonu goreniya na effektivnost eye ispolzovaniya pri tushenii pozharov v pomeshchenii [Influence of sizes and input speeds of water droplets in a combustion zone on efficiency of its use at fire suppression in enclosures]. Teplovyye protsessy v tekhnike — Thermal Processes in Engineering, 2014, vol. 6, no. 4, pp. 157–163. In Russ.

  15. Koulik M.I. Progrev i ispareniye kapel zhidkogo topliva v potoke nagretogo vozdukha [Heating and evaporation of oil fuel droplets in hot air]. Vestnik Kharkovskogo natsionalnogo avtomobilno-dorozhnogo universiteta — Bulletin of Kharkov National Automobile and Highway University, 2007, no. 38, pp. 171–175. In Russ.

  16. Kelbaliev G.I. Mass transfer between a drop or gas bubble and an isotropic turbulent flow. Theoretical Foundations of Chemical Engineering, 2012, vol. 46, no. 5, pp. 477–485.

  17. Arkhipov V.A., Tkachenko A.S., Usanina A.S. Numerical investigation of droplet motion in rotating viscous liquid flow. Journal of Engineering Physics and Thermophysics, 2013, vol. 86, no. 3, pp. 534–541.

  18. Moskalev L.N. Chislennoye resheniye matematicheskoy modeli dvizheniya kapel v sputnom vrashchayushchemsya potoke gaza [Numerical solution of the mathematical model of droplet motion in a spiraling rotating gas stream]. Vestnik tekhnologicheskogo universiteta — Bulletin of the Technological University, 2015, vol. 18, no. 2, pp. 371–373. In Russ.

  19. Polevodova L.A., Sinitsyn N.N. Raschet trayektoriy dvizheniya kapli vody s uchetom fazovykh perekhodov v sisteme gazoochistki kislorodnogo konvertera [Calculation on a motion path of a drop of water in gas cleaning system of basic oxygen converter, with phase transfers accounted]. Vestnik Voronezhskogo gosudarstvennogo tekhnicheskogo universiteta — Bulletin of Voronezh State Technical University, 2007, vol. 3, no. 6, pp. 160–164. In Russ.

  20. Teplo- i massoobmen. Teplotekhnicheskiy eksperiment: Spravochnik. Red.V.A. Grigoryeva, V.M. Zorina [Heat and mass transfer. Thermal Engineering Experiment: Handbook. Red. V.A. Grigoryeva, V.M. Zorina]. Moscow: Energoizdat, 1982. 512 p. In Russ.

  21. Kalitkin N.N. Chislennyye metody [Numerical methods]. Moscow: Nauka, 1978. 512 p. In Russ.

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI