Energy separation in vortex tubes with laminar flow in the nozzle input


Аuthors

Piralishvili S. A.1*, Vasilyuk O. V.2

1. ,
2. Rybinsk State Aviation Technical University named after P.A. Soloviev, RSATU, 53, Pushkin St., Rybinsk, Yaroslavl region, 152934, Russia

*e-mail: piral@list.ru

Abstract

The Ranque effect theory still remains incompletely solved notwithstanding the attempts ofseveral generations of researchers. The devices previously studied by many authors operate under conditions of sonic velocity at their inlets and turbulent flow in the energy separation cham- ber. This allowed most researchers to conclude that generation of large-scale vortices with in- tense flow turbulence was the cause of energy redistribution. However, the issue of optimal conditions and the possibility of obtaining the effect of energy separation in a laminar flow in the vortex tube is still open. The object of the study is a countercurrent vortex tube of cylindri- cal shape with a 20 mm diameter. The inlet tangential swirling nozzles are made in the form of a rectangle with a relative area of Fsw = 0.1 .The cooled flow removal is performed through the diaphragm with a relative radius of rd = 0.7 . The presented geometrical parameters allow achieving the highest effects of energy separation. Computational results allowed elicit the de- pendence of the relative heating and cooling effects for different vortex tubes on the Reynolds number in the inlet nozzle, and the dependence of the cooled flow share on the inlet pressure values. Various flow stream patterns have been obtained, which allowed determine the reason of energy separation in vortex tubes at the laminar flow mode. It was confirmed that the process of energy separation in vortex tubes with a laminar supply of a compressible fluid in the nozzle section is accomplished by the large-scale vortices, similar to calculations at turbulent regimes, but with lower efficiency.

Keywords:

vortex tube, laminar flow, energy separation, turbulence, secondary vortex structures.

References

  1. Ranque G.J. Experiences sue la detentegirataire avec pro- ductions simultanecs d’un echappementd’airfroid. J. de Phy- sique et de Radium, 1933, vol. 7, no. 4, pp. 112–115.

  2. Hilsch R. Die expansion von gasen in zentrifugalfeld als kolterprozeb. Z. fur Naturforschung, 1946, Bd.1, no. 4, pp. 2-3—208.

  3. Scheper G.W. The vortex tube-internal flow data and a heat transfer theory. Refrigerating Engineering, 1951, vol. 59, Oct., pp. 985–988.

  4. Charny I.A. K teorii vikhrevogo kholodil’nika [To the theo- ry of vortex refrigerator]. Izv. АN SSSR OTN. Mekhanika zhidkosti i gaza — Izv. USSR REL. Fluid and gas mechanics, 1962, no. 6, pp. 148–153. In Russ.

  5. Van-Deemter J.J. On the theory of the Ranque-Hilsch cooling effect. Applied Scientifis Research, Netherland. Sec. A, 1953, vol. 3, pp. 174–196.

  6. Alekseev T.S. O prirode ehffekta Ranka [On the nature of Ranque effect]. Inzhenerno-fizicheskij zhurnal — Journal of Engineering Physics and Thermophysics, 1964, vol. 7, no. 4, pp. 121–130. In Russ.

  7. Goldshtik, M.A. K teorii ehffekta Ranka [To the Ranque theory]. Izvestiya АN SSSR, Mekhanika zhidkosti i gaza — Fluid Dynamics. A Journal of Russian Academy of Sciences, 1969, no. 4, pp. 153–162. In Russ.

  8. Rusa X., Homutescu C., Bujor C. Theoretical and experi- mental confederations recording the Ranque effect. Bue Inst. Politehn. Jasi, 1987, Sec. 4, vol.33, no. 1-4, pp. 51–54.

  9. Schults-Grunow F. How the Ranque-Hilsch vortex tube operates. Refr. Engineering, 1951, no. 1, pp. 52.

  10. Merkulov A.P. Gipoteza vzaimodejstviya vikhrej [Hypothe- sis of vortex interaction]. Izvestiya vuzov. Energetika — Izvestiya Vuzov. Power industry, 1964, no. 3, pp. 74–82. In Russ.

  11. Hinze J.O. Turbulence. An introduction to its mechanism and theory. McGraw-Hill, New York, 1959. 586 p. [Russ. Ed. Turbulence. Moscow, Publishing House Phys. mat. lit., 1963. 680 p.]

  12. Piralishvili Sh.A. Fiziko-matematicheskie modeli protsessa ehnergorazdeleniya v vikhrevykh termotransformatorakh Ranka [Physical and mathematical models of the process of energy separation in Ranque vortex thermotransformers]. Deposited in VINITI 04.01.85., No. 160–85. 42 p. In Russ.

  13. Schmidt W. Der Massenaustansch in freier Luft. Hamburg:H. Grandverlag, 1925. 18 p.

  14. Piralishvili Sh.A. Modifitsirovannaya gipoteza vzai- modejstviya vikhrej, kak fiziko-matematicheskaya model’ ehffekta Ranka [Modified hypothesis of the interaction of vortices, as a physico-mathematical model of the Ranque ef- fect]. «Protsessy goreniya i okhrana okruzhayushhej sredy». Materialy I Vsesoyuznoj nauchno-tekhnicheskoj konferentsii. [Combustion processes and environmental pro- tection: Mat. I All-Union scientific-technical. conf.]. Ry- binsk: Publ. house of RGATA, 1993, S. 87–88. In Russ.

  15. Piralishvili Sh.A., Polyaev V.M. Flow and thermodynamic characteristics of energy separation in a double-circuit vor- tex tube. Experimental Thermal and Fluid Science, 1996, no. 12, pp. 399–410.

  16. Frohlinsdorf W., Under H. Numerical investigations of the compressible flow and the energy separation in the Ranque—Hilsch vortex tube. W. Int. J. Heat and Mass Transfer, 1999, no. 42, pp. 415–422.

  17. Kim C.S., Sohn C.H. Dynamic characteristics of an unsteady flow through a vortex tube. Journal of Mechanical Science and Technology, 2006, vol. 20, no. 12, pp. 2209–2217.

  18. Hartnett J.P., Eckert E.R.G. Experimental study of the velocity and temperature distribution in a high velocity vor- tex — type flow. Transections of the ASME. Ser C, 1957, May, pp. 751–758.

  19. Piralishvili Sh.A., Polyaev V.M., Sergeev M.N. Vikhrevoj Ehffekt. Eksperiment, Teoriya, Tekhnicheskie Resheniya [Vortex Effect. Experiment, Theory, Technical Solutions]. Moscow: UNTSP «Energomash» Publ., 2000. 412 p. In Russ.

  20. Piralishvili Sh.A., Azarov A.I. Vortex effect theory, exper- iment, industrial application, prospects. Heat Transfer Re- search, 2006, vol. 37, pp. 707–730.

  21. Zaitsev D.K., Smirnov E.M. Effect of compressibility on vor- tex breakdown in a gas flow in a circular tube. Fluid Dynamics, 1996, no. 5, pp. 661–665. https://doi.org/10.1007/BF02078216

  22. Baranov V.A., Smirnov E.M., Vikultsev Y.A., Zaitsev D.K. Effekt Ranka v laminarnom potoke [The Ranque effect in laminar flow]. St. Petersburg: St. Peters- burg state University Publ., 1996, pp. 291–306. In Russ.

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI