The paper is devoted to the problem of optimal design of multilayer thermal protection, including a layer of highly porous cellular material. The desired vector of design parameters should ensure a minimum of total mass of the system and required operation temperatures on the boundaries of layers. Traditional methods for solving such a problem implies the determination of layers thickness for multi-layer thermal protection and suggest, that thermal properties of all materials composed the layers are available in a wide range of temperatures. In present work, the design parameters vector includes porosity and cell diameter, which characterize the structure of a highly porous cellular material, in addition to the thicknesses of the layers. The optimization problem is solved using a computational scheme, which combines two well-known methods: the projected Lagrangian method with the quadratic subproblem and the penalty func tion method. The penalty function method is characterized by a large region of convergence and provides a good initial estimate of the optimal parameters’ values for the projected Lagrangian method with excellent local convergence properties. To illustrate the capabilities of developed algorithm and corresponding software, the problem of choosing of optimal parameters for the flat three-layer heat shield of a solar probe exposed to extreme radiative heat loads was solved. The obtained results confirm the correctness and effectiveness of developed algorithm for optimal design of multilayer thermal protection, taking into account the structure of highly porous cellular materials. The method is applicable for solving a wide range of thermal design problems, including the design of advanced thermal protection systems for spacecraft operating under conditions of extreme thermal loads such as solar and planetary probes.
Shchurik A.G. Iskusstvennye uglerodnye materialy [Artificial carbon materials]. Perm’: PGU publ., 2009. 342 p. In Russ.
Ozisik M.N. Radiative Transfer and Interactions with Conduc- tion and Convection. New York: Wiley, 1973. (Russ. ed. Ozisik M.N. Slozhnyj teploobmen. Mocsow: Mir, 1976. 616 p.)
Öchsner A., Murch G.E., Lemos M. J.S. (Eds). Cellular and Porous Materials: Thermal Properties Simulation and Prediction. Weinheim: Wiley-VCH, 2008. 422 p.
Baillis D., Raynaud M., Sacadura J.F. Determination of spectral radiative properties of open cell foam. Model vali- dation. Journal of Thermophysics and Heat Transfer, 2000, vol.14, no. 2, pp. 137–143. https://doi.org/10.2514/2.6519.
Cunsolo S., Coquard R., Baillis D., Bianco N. Radiative properties modeling of open cell solid foam: Review and new analytical law. International Journal of Thermal Sciences, 2016, vol. 104, pp. 122–134. https:// doi:10.1016/ j.jqsrt.2007.05.007.
Hulst H.C. van de. Light Scattering by Small Particles. New York: Wiley — Chapman, 1957. 470 p.
Coquard R., Rochais D., Baillis D. Conductive and radia- tive heat transfer in ceramic and metal foams at fire tempe- ratures. Fire Technology, 2012, vol. 48, pp. 699–732. https://doi.org/10.1007/s10694-010-0167-8.
Cunsolo S., Coquard R., Baillis D., Chiu W.K.S., Bianco N. Radiative properties of irregular open cell solid foams. Interna- tional Journal of Thermal Sciences, 2017, vol. 117, pp. 77–89. https://doi.org/10.1016/j.ijthermalsci.2017.03.007.
Nenarokomov A.V. Design of a system of multilayer heat insulation of minimum mass // High Temperature, 1997, vol. 35, pp. 453–457.
Mikhailov V.V. Optimizatsiya mnogoslojnoj teploizolyatsii [Optimization of multilayer heat insulation]. Inzhenerno- fizicheskij zhurnal — Journal of Engineering Physics, 1980, vol. 39, pp. 286–291. In Russ.
Maiorova I.A., Prosuntsov P.V., Zuev A.V. Optimal thermal design of a multishield thermal protection system of a reusable space vehicles. Journal of Engineering Physics
and Thermophisics, 2016, vol. 89, pp. 528–533. https://doi: 10.1007/s10891-016-1406-8.
Nosratollahi M., Mortazavi M., Adami A., Hosseini M. Multidisciplinary design optimization of a reentry vehicle using genetic algorithm. Aircraft Engineering and Aero- space Technology: An International Journal, 2010, vol. 82, pp. 194–203. https://doi.org/10.1108/00022661011075928.
Riccio A., Raimondo F., Sellitto A., Carandente V., Scigliano R., Tescione D. Optimum design of ablative thermal protection systems for atmospheric entry vehicles. Applied Thermal Engineering, 2010, vol. 119, pp. 541–552. https://doi.org/10.1016/j.applthermaleng.2017.03.053
Xie C., Wang Q., Sunden B., Zwang W. Thermomechani- cal optimization of lightweight thermal protection system under aerodynamic heating. Applied Thermal Engineering, 2013, vol. 59, pp. 425–434. https://doi.org/10.1016/j.appl- thermaleng.2013.06.002.
Polak E. Computational Methods in Optimization: A Uni- fied Approach. New York: Academic Press. 1971. (Russ. ed. Polak E. Chislennye metody optimizatsii. Edinyj pod- khod. Moscow: Mir, 1974. 374 p.)
Gill P.E., Murray W., Wright M.H. Practical optimiza- tion. London: Academic Press. 1981. 401 p. (Russ. ed. Gill P., Murray W., Wright M. Prakticheskaya optimizatsi- ya. Moscow: Mir, 1985. 509 p.)
Ohlhorst C.W., Vaughn W.L., Ransone P. O., Hwa- TsuTsou. Thermal Conductivity Database of Various Struc- tural Carbon-Carbon Composite Materials. NASA TM-4787. Langley Research Center. Hampton, 1997. 96 p.
Chekanova V.D., Fialkov A.S. Vitreous Carbon (Prepara- tion, Properties, and Applications). Russian Chem. Reviews, 1971, vol. 40, no. 5, pp. 413–428.
Papoular R.J., Papoular R. Some optical properties of graphite from IR to millimetric wavelengths. Monthly Notices of the Royal Astronomical Society, 2014, vol. 443, pp. 2974–2982. https://doi.org/10.1093/mnras/stu1348
ULTRAMET Advanced Materials Solutions. Ultramet. Pacoima, 2018. Available at: http://ultramet.com/refractory- open-cell-foams-carbon-ceramic-and-metal/properties-of- foam-materials (accessed 19.07.2019 г.)
mai.ru — informational site of MAI Copyright © 2009-2024 by MAI |