Methods to reduce drag losses of long cryogenic pipelines


Аuthors

Kuzma-Kichta Y. A.1*, Lavrikov A. V.1, Glazkov V. V.2**, Duplyankin R. A.2, Miakshina K. E.2

1. National Research University “Moscow Power Engineering Institute”, 14, Krasnokazarmennaya str., Moscow, 111250 Russia
2. Moscow Power Engineering Institute (National Research University), 14, Krasnokazarmennaja St., Moscow, 111250, Russia

*e-mail: kuzma@itf.mpei.ac.ru
**e-mail: VVGlazkov@gmail.com

Abstract

Various methods of reducing hydraulic resistance in long cryogenic pipelines are consi-dered. The loss of pressure in long tubes in the case of dimpled, rolling, twisted pipes and the combined method (dimpled and rolling) has been experimentally investigated. The results of the experiments show that the loss of pressure in the pipes with joint dimples and rolling is about 20% less than in smooth pipes. The possibilities of reducing hydraulic resistance of the pipeline by pumping slush and using turbulence-damping screens drifting along with the flow are con-sidered.

Keywords:

pressure loss, dimples, twisted pipes, slush, drifting turbulence-damping screen.

References

  1. Kuzma-Kichta Yu.A., Glazkov V.V., Miakschina K.E, Ivanov Yu.V., Satarou Yamaguchi. SPG: perspektivnye sfery primeneniya i problem transportirovki na bol’shie rasstoyaniya [LNG: promising areas of application and problems of transportation over long distances]. Teplovyeprotsessy v tekhnike — Thermal processes in engineering, 2019, vol. 11, no. 4 pp. 170–184. In Russ.

  2. Dzyubenko B.V., Kuzma-KichtaYu.A., Leontiev A.I., Fedik I.I., Kholpanov L.P. Intensification of heat and mass transfer on macro-, micro-, and nanoscales. Begell, 2016. 630 p.

  3. Litvinenko Yu.A., Chernoray V.G., Kozlov V.V., Grek G.R., Loefdahl L., Chun H.H. The influence of riblets on the development of a λ structure and its transformation into a turbulent spot. DokladyPhysics, 2006, vol. 51, no. 3, pp. 144–147.

  4. Popov I.A., Makhyanov H.M., Gureev V.M. Fizicheskie osnovy I promyshlennoe primenenie intensifikatsii teploobmena: Intensifikatsiya teploobmena [Physical foundations and industrial applications of heat transfer intensification. Heat transfer intensification]. Kazan: Center for Innovative Technologies, 2009. 560 p.In Russ.

  5. KiknadzeG.I., KrasnovYu.K. Evolyutsiya smercheobraznykh techenij vyazkoj zhidkosti [Evolution of spout-like flows of a viscous fluid]. Dokl. Akad. Nauk SSSR, 1986, vol. 290, no. 6, pp. 1315–1319. In Russ.

  6. Kalinin E.K., Dreitser G.A., Yarkho S.A. Intensifikatsiya teploobmena v kanalakh [Intensification of heat transfer in channels]. Moscow: Mashinostroenie, 1990. 208 p. In Russ.

  7. Leontiev A.I., Alekseenko S.V., Volchkov E.P., Dzyubenko B.V., Dragunov Yu.G., Isaev S.A., Koroteev A.A., Kuzma-Kichta Yu.A., Popov I.A., Terekhov V.I. Vikhrevye tekhnologii dlya ehnergetiki [Vortex technologies for power engineering]. Moscow: Publishing house MPEI, 2016. 328 p. In Russ.

  8. Kuzma-Kichta Yu., Leontiev A. Choice and justification of the heat transfer intensification methods. Journal of Enhanced Heat Transfer, 2018, vol. 25, no. 6, pp. 465–564.

  9. IsaevS., Popov I., Leontiev A., Chudnovsky Y. Vortex heat transfer enhancement in narrow channels with a single oval-trench dimple oriented at different angles to the flow. Journal of Enhanced Heat Transfer, 2018, vol. 25, no. 6, pp. 579–604.

  10. Belyakov V.K., Kuzma-Kichta Yu.A. Teploobmennaya truba [Heat exchanger tube]. Petent RF, no. 2221976, 2004.

  11. Belousov Yu.P. Protivoturbulentnye prisadki dlya uglevodorodnykh zhidkostej [Turbulent additives for hydrocarbon fluids]. Moscow: Nauka, 1986. 144 p. In Russ.

  12. Grabowski D.W. Drag reduction in pipe flows with polymer additives. PhD Thesis. Rochester Institute of Technology. 1990.

  13. Lee W.K., Vaseleski R.C., Metzner G.B. Turbulent drag reduction in polymeric solutions containing suspended fibers. AIChE Journal, 1974, vol. 20, no. 1, pp. 128–133.

  14. Landau L.D., Lifshitz E.M. Teoreticheskayafizika. T. VI. Gidrodinamika [Theoreticalphysics. T. VI. Hydrodynamics].Moscow: Nauka, 1962. In Russ.

  15. Mustafin F.M., et al. Promyslovye truboprovody i oborudovanie [Production pipelines and equipment]. Moscow: Nedra, 2004. 662 p. In Russ.

  16. TrubakovYu.P.,GabrianovichB.N., LevchenkoYu.D. Issledovanie turbulentnogo potoka zhidkosti vo vkhodnom uchastke krugloj truby [Investigation of turbulent fluid flow in the inlet section of a circular pipe]. Izv.Academy of Sciences of the BSSR. Ser. physical and energy sciences — Proceedings of the National Academy of Sciences of Belarus. Physico-technical series, 1976, no. 2, p. 89.

  17. Slezkin N.A. Dinamika vyazkoj neszhimaemoj zhidkosti [Viscous incompressible fluid dynamics]. Moscow: GITTL, 1955. 521 p. In Russ.

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI